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Abstract:  

Background: Designing supply chains has become a strategic focus for companies aiming to stay economically competitive, particularly in a 

landscape shaped by global trade and faster industrial cycles. 

Purpose: This paper presents a novel strategic decision support model that integrates Life Cycle Assessments (LCAs) with multicriteria 

optimization to facilitate sustainable value chain design. The goal is to identify the optimal solution(s) to a design problem while balancing 

multiple sustainability criterion.  

Study design/methodology/approach: The study employs an integrated approach that combines Life Cycle Assessment (LCA) for 

environmental criteria and Life-Cycle Costing (LCC) for economic criteria within a multi-criteria optimization framework. The model considers 

various strategic options, including material flows and investments in new technologies, and generates Pareto fronts to depict compromise 

solutions between conflicting criteria. The model's key innovation lies in its ability to optimize solutions while ensuring fairness and 

comparability between all prospective alternatives. This is achieved through a multicriteria optimization framework that evaluates multiple 

objectives and determines optimal solutions. To demonstrate the model's practicality and replicability, a real-world case study is presented in the 

forest sector, a challenging industry characterized by complexity and convergence.  

Findings/conclusions: Applying the model to a real-life case study demonstrates its potential to provide valuable information to decision-

makers, and highlights its generic nature, making it applicable to a variety of industrial sectors.. The proposed model provides a novel decision 

support framework for companies seeking to develop a comprehensive sustainability strategy for their entire value chain, thereby enabling the 

identification of compromise solutions that balance minimizing environmental impacts with long-term viability. By presenting a generic and 

replicable approach, this paper contributes to the development of a functional strategic decision tool that can be used to support sustainable value 

chain design. 

Limitations/future research: The current multi-criteria optimization addresses only economic and environmental factors, but integrating social 

aspects remains necessary for comprehensive decision support in sustainable development. Incorporating uncertainty into the solutions presents 

an additional challenge, which could be mitigated by using a stochastic optimization framework to better account for risks and trade-offs. 

Keywords: Multicriteria Optimization, Life-Cycle Assessment, Life-Cycle Costing, Sustainability, Strategic, Decision Support, Supply Chain. 

Introduction 

Supply chain design has become a strategic priority for companies 

seeking to remain economically competitive. This is especially 

crucial in an environment marked by globalized trade and 

accelerated industrial cycles (Tan et al., 2002). The business press 

frequently reports on logistics network reconfiguration, 

reorganization, mergers, and outsourcing - developments driven by 

trends such as increased computerization, trade flow complexity, 

and competition concerns (Ballou, 1997; Bowersox & Calantone, 

1998). Consequently, the strategic design and planning of logistics 

networks has emerged as a key focus for both businesses and 

researchers. This interdisciplinary field, encompassing 

management, strategy, logistics, operations research, presents 

significant analytical challenges (Daskin, 1985; Esmizadeh & 

Parast, 2020; Schmidt and Wilhelm, 2000). 

Integrating sustainability considerations into strategic design of 

logistics networks, alongside the previously cited factors, deliver a 

holistic optimization solution but introduces an additional level of 

challenge, as it can involve potentially conflicting criteria (Biuki et 

al., 2020; Nagurney & Nagurney, 2010; Neto et al., 2008). This 

necessitates finding compromise solutions that balance the 

traditional economic objectives (Lu, 2010; Wang et al., 2011). 

Addressing this multifaceted decision problem requires careful 

analysis to determine the most appropriate trade-off solutions that 

address both the economic and environmental dimensions of the 

logistics network design. 

The proposed model provides a novel decision support framework 

for companies seeking to develop a comprehensive sustainability 

strategy for their entire value chain, thereby enabling the 

identification of compromise solutions that balance minimizing 

environmental impacts with long-term viability. This framework is 

based on a multicriteria optimization model that integrates life 

cycle assessments, Activity-Based Life-Cycle Costing, and 

prospective life cycle assessments to evaluate different investment 

options and generate a set of Pareto-optimal solutions. 
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The integration of environmental considerations into the design of 

logistics networks, alongside economic criteria, is a relatively 

recent development (Biuki et al., 2020; Demir et al., 2022). 

Previous studies in this domain have primarily focused on reducing 

waste, managing wastewater discharge, or incorporating 

environmental elements into economic criteria, such as calculating 

the benefits of reducing waste generation and processing costs. 

More recently, the focus has been narrowly on reducing carbon 

emissions alone. However, this limited "carbon tunnel" perspective 

fails to consider the broader environmental impacts across the 

entire product lifecycle, overlooking other important 

environmental considerations (Prado et al., 2022). Emerging 

research suggests that a more comprehensive approach focusing on 

multicriteria decision-making and life cycle assessment (LCA) 

could be beneficial (Neto et al., 2008; Rees & Wang, 2014). 

Multi-criteria optimization has been the focus of extensive research 

in recent years, but there are relatively few publications that 

document its real-world applications. This scarcity has been 

attributed to the complex nature of preference structures among 

criteria, the challenges in resolving optimization models, and the 

difficulties associated with implementation (Fei et al., 2017; Greco 

et al., 2015; Zavadskas et al., 2020). 

The presented model aims to support industrial managers in 

choosing between investment options that maximize economic 

profits, minimize environmental impacts, or offer a compromise 

between these two criteria. This model utilizes a cradle-to-gate 

attributional LCA on a portfolio of products, as presented in 

Laurent et al. (2016), to quantify the environmental aspects of a 

specific product portfolio for a forestry industry. Additionally, an 

Activity-Based Life-Cycle Costing assessment (ABLCC), based on 

the methodology proposed by Emblemsvåg (2001), is used to 

determine the cost of each product of the same portfolio (Laurent 

et al., 2021). Finally, a prospective LCA (P-LCA) (Moni et al., 

2019; Thonemann et al., 2020) is conducted to estimate the 

environmental impacts of integrating new technologies and the 

substitution effects of competitive materials with a consequential 

LCA (C-LCA) (Schaubroeck et al., 2020; Corona et al., 2020). 

This application is based on primary data from a forestry company, 

supporting decisions on future technology investments. The 

forestry sector presents a major challenge due to its complex and 

divergent nature (Vila et al., 2006; Hurmekoski et al., 2018). The 

result of this analysis is a set of Pareto-optimal solutions that 

represent the compromises between economic and environmental 

objective (Wang & Rangaiah, 2017). The generated solutions will 

be accompanied by material flow diagrams to enhance 

understanding (Vaskan et al., 2014). From the 150 solution 

generated by the multicriteria optimization model, a marginal 

abatement cost curve (MAAC) of the net carbon emissions 

reductions is presented in the discussion section (Kesicki & 

Strachan, 2011) . This holistic approach is considered a decision-

making support tool for the strategic design of a sustainable 

logistics network within the forestry industry. 

Literature Review 

The next paragraphs present the different methodologies used in 

this analysis and applied in the case study. 

Attributional Life-Cycle Assessment 

Attributional Life-Cycle Assessment (A-LCA), which is 

commonly called just LCA, is a methodology that attributes the 

environmental impacts associated with each activity of a product or 

service's lifecycle. By definition, the lifecycle encompasses all 

stages from the extraction of raw materials to the final disposition 

of the product.  

This methodology, which first emerged in the 1980s, has since 

been the subject of international standardization (ISO 14040) and 

is now one of the most widely used method for determining the 

environmental impacts of products (Lesage & Müller, 2017; 

Postlethwaite, 1994). A key premise of this methodology is that all 

environmental interventions (e.g., resource extractions, emissions) 

occurring during the lifecycle of a product are attributed to that 

product. This allows for a comprehensive evaluation of the 

environmental performance of a product or service, identifying hot 

spots and opportunities for improvement (Curran, 2004; Jessop and 

Mac Donald, 2023). 

Activity-Based Life-Cycle Costing 

In recent decades, numerous lifecycle cost assessment 

methodologies have been developed. Comprehensive literature 

reviews provide a list of these methods along with brief 

descriptions (Asiedu & Gu, 1998; Durairaj & Tan, 2002; Gluch & 

Baumann, 2004).  

Among them, the accounting method based on "Activity-Based 

Costing" has captured our attention due to its potential parallels 

with the A-LCA methodology. The Activity-Based Life-Cycle 

Costing (AB-LCC) method allows for guidance on the profitability 

of a product or a portfolio of products, as described by 

Emblemsvåg (2001). The basic principle is to identify the relevant 

activities required to produce a good or provide a service, and then 

allocate the costs of these activities to the final product or service.  

Prospective Life-Cycle Assessment 

Prospective Life Cycle Assessment (P-LCA) is a relevant approach 

to assess the environmental performance of future energy pathways 

and emerging technologies at an early stage of development, in 

order to guide investment and technology deployment towards a 

sustainable economy. By exploring potential future scenarios based 

on a set of assumptions and prospective data, Prospective LCA can 

provide valuable insights to support decision-making (Arvidsson & 

al., 2017; Thonemann et al., 2020). 

Consequential Life-Cycle Assessment 

The use and application of Consequential Life-Cycle Assessments 

(C-LCA) are primarily driven by the need to understand the 

consequences of a decision (Ekvall & Weidema, 2004). C-LCA 

identifies the consequences of a decision by describing the physical 

and socio-economic causal relationships involving the study 

system, and by exploring how physical flows can change, thereby 

anticipating the consequences of decision-making (Schaubroeck, 

2023). 

In contrast to A-LCA, which aims to attribute environmental 

impacts of a product without considering prospective impacts, C-

LCA has implications for the methodology, particularly in defining 

system boundaries. Even minor changes can have consequences 

that extend beyond the product of concern. This is especially 

relevant for multifunctional processes, open-loop recycling, or the 

use of resources with potential competition, such as wood 

resources. Since the emergence of competing products in the 

industry and petroleum eras, it is necessary to extend the system 

boundaries to include parts of other systems affected by the 

decision. The system boundaries must be implicitly extended to 
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include additional functions, such as energy substitution, or the use 

of materials in construction (Petersen & Solberg, 2005; Luu et al., 

2020). 

The integration of environmental criteria into 

operational research 

Mounting consumer and regulatory pressures on corporate social 

responsibility have prompted industry to reduce the environmental 

impacts of their entire value chains. Numerous studies have also 

examined various aspects of logistics networks, including closed-

loop supply chains and reverse logistics (Srivastava, 2007). Others 

have focused on one or more specific elements, such as inventory 

management, eco-design, production and recycling planning, 

product recovery, or greenhouse gas emissions (Azevedo et al., 

2011). However, these studies have typically centered on 

production centers without considering the full product life cycle. 

Life cycle assessment, commonly used to quantify the potential 

environmental impacts of a product or service, seems appropriate 

to meet this need for a more comprehensive approach (Azapagic & 

Clift, 1999). The use of the life cycle approach in the field of 

logistics dates to 1996 (Bloemhof‐Ruwaard et al., 1996), 

addressing the potential for reducing environmental impact using 

recycled paper. In 1999, Azapagic & Clift (1999) proposed a 

methodology for integrating LCA into a three-step optimization 

framework. The first step is to perform an LCA, then formulate a 

multi-criteria optimization problem, and finally select the solution 

offering the best compromise. The first real case studies were 

published in 2011, but they used the eco-cost approach. This 

approach monetizes environmental impacts, leading to the use of a 

single-criteria optimization model (Čuček et al., 2011). Some 

applications use an aggregation of environmental damage to obtain 

a single score, thus reducing the model to bicriteria, i.e. 

environmental and economic (Cerri et al., 2013; Kostin et al., 

2012). Moreover, the literature on the resolution of these models 

has been performed either through heuristics (Bernier et al., 2013; 

Rivallain et al., 2012) or by the ε-constraint method (Cerri et al., 

2013; Čuček et al., 2011; Kostin et al., 2012). More recently,  

Shekarian et al. (2022)  offer a comprehensive review of 

sustainability in value chain design. Jayarathna et al. (2021) 

published a literature review on multi-objective optimization 

sustainable supply chain. Paul et al. (2021) discuss recent 

advancements in multi-criteria decision-making, highlighting how 

the following methodology fits into and improves upon current 

practices by addressing the complexities of sustainable value chain 

design for strategic decision support. 

Methodology 

 

 

 

 

 

Figure 1 Mapping of the proposed decision support model 

Source: the authors 

The proposed methodology offers the benefit of incorporating 

economic and environmental quantifications to support industrial 

decision-makers in investment choices. As depicted in Figure 1, 

this methodology comprises four steps and is founded upon four 

methods that have been previously documented in the literature 

review. By embedding an LCA within an optimization framework, 

the approach ensures a holistic assessment, where environmental 

impacts give equal weight alongside economic factors, enabling a 

balanced and comprehensive evaluation of industrial systems for 

sustainability.  

The first step is to perform an A-LCA to quantify the 

environmental impacts of the activities within the industrial system 

under study. This step establishes a baseline quantifying of the 

system’s environmental performance, such as climate change, 

biodiversity, human health, resource consumption impacts. The 

second step involves conducting Activity-Based Life Cycle 

Costing (ABLCC), a contemporary accounting methodology that 

enables the quantification of costs across the entire product 

portfolio and establishes a connection between these costs and the 

corresponding environmental impacts. Together, these steps 

provide a robust foundation for integrating economic and 

environmental dimensions into the decision-making process.  

The third step adopts a prospective and consequential approach. 

Consequential Life Cycle Assessment (C-LCA) is employed to 

determine the environmental impacts arising from substitution 

effects and the implementation of new technologies, as identified 

through the application of P-LCA (Bisinella et al., 2021). This 

forward-looking perspective ensures that the methodology is not 

limited to current conditions but also considers potential future 

developments, such as technological innovations and evolving 

regulatory environments.  

Once the environmental and economic quantification is completed, 

including prospective solutions, all these data are integrated into a 

multicriteria optimization model in the fourth step. The 

optimization model resolution is conducted using an exact method 

(Halffmann et al., 2022) and an a posteriori approach by varying 

the set of possible weights for each criterion (Kellner et al., 2019). 

This enables the generation of a set of non-dominated solutions, 

which are presented in a graph called the Pareto front (Pereyra et 

al., 2013). The Pareto front represents the systematic exploration of 

trade-offs between criteria, offering decision-makers a transparent 

view of how improvements in one area (e.g., environmental 

performance) may compromise or complement another (e.g., 

economic viability). Furthermore, the methodology incorporates 

future-oriented decision support through scenario and sensitivity 

analyses. These analyses identify how solutions might perform 

under various future conditions, such as changes in regulatory 

frameworks, market dynamics, or technological advancements. By 

providing a prospective roadmap rather than a one-time solution, 

the methodology equips decision-makers with the tools to navigate 

the uncertainty and make resilient, long-term investment choices.  

The following paragraphs present the mathematical model for 

generating the solutions through mathematical optimization, 

ensuring a rigorous and transparent approach to decision-making. 

The mathematical model 

The logistics network optimization problem can be represented as a 

directed graph model. The mathematical formulation presented 

here is a mixed-integer linear programming model. This model 

enables the consideration of opening new production facilities to 

generate products not currently in the company’s portfolio. The 

MILP model we propose is a multi-criteria optimization, meaning 
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the objective function aims to optimize multiple criteria 

simultaneously. Additionally, to account for temporal and dynamic 

aspects, the modeling approach is also the multi-period in nature. 

The goal in solving a network optimization problem is to determine 

the optimal material flow along each connection (arc) between 

production units (nodes) such that the input and output quantities 

are balanced. An optimal solution maximizes an objective function 

that accounts for revenues, losses, purchases, and the costs of 

implementing new technologies on each of the five criteria. 

The mathematical model consists of five components. First, the 

sets (2.1.1) are presented to aid in the presentation and 

comprehension of the model. Next, the decision variables (3.1.2), 

parameters (3.1.3), and objective function (3.1.4) - which serves to 

find the optimal solution based on the criteria - are described. 

Finally, the constraints (3.1.5) are presented. The following 

paragraphs provide a detailed description of each of these 

elements. 

 Sets 

Table 1   Sets 

𝑈 
All production units (a unit is a site where a processing 

activity takes place generating one or more products). 

𝐴 
Criterion set (economic, human health, ecosystem 

quality, climate change, resource consumption). 

𝐹 Set of arcs between the pairs of units. 

𝑇 Set of periods (5 periods of 1 year) 

𝑃 Set of products 

𝑅 
Set of processes (process includes transportation 

process) 

𝑅𝑢 Set of processes available at units u 

𝐽 
Sub-set of assembly product P can be used as energy 

input. 

 

 Variables of Decision 

The variables of decision are the elements on which the solver 

varies the values to calculate an optimum. We thus find the flow of 

matter and the opening of new technologies. The parameters are 

expressed to correspond to the functional unit defined in the 

environmental and economic analyses, which is the cubic meter. 

Table 2   Variable of decision 

𝛼𝑝,𝑢,𝑡 
Quantity of product p produced  at unit 𝑢 ∈ 𝑈 at 

period t. 

𝜔𝑟,𝑢,𝑡 
Number of times the process r is used at the unit u at 

the period t. 

𝜎𝑢,𝑡 

Binary variable which indicates the initial 

opening (1st opening) of the unit u at the period t (0 if 

closed, 1 if open). This variable applies the opening 

cost only once in the objective function. 

𝛾𝑢,𝑡 

Binary variable which indicates the opening condition 

of the unit u at the period t (0 if closed, 1 if open). 

This variable ensures the respected the production 

capacity. 

 

 Parameters 

𝑖𝑎,𝑟,𝑢,𝑡 
Impacts on criterion a of producing recipe r in the 

unit u at the period t. 

𝑦𝑎,𝑢,𝑡 
Impacts on criterion a of opening the unit u at the 

period t. 

𝑝𝑎 
Weighting applied to the criterion a є A (varying 

from 0 to 1; ∑𝜌𝑎 = 1). 

𝑞𝑝,𝑡 
Quantity of product p externally available at 

period t (can be infinite if unlimited). 

𝑣𝑟,𝑝,𝑢,𝑢′,𝑡,𝑡′ 

Volume of the product p used as input (negative) 

or generated as output (positive) at unit u’ at time 

t’ by a quantity of one process r executed at unit u 

at time t. 

𝑞𝑟,𝑢,𝑡
𝑚𝑖𝑛  

Minimum quantity of process r to execute when 

opening the unit u at the period t. 

𝑞𝑟,𝑢,𝑡
𝑚𝑎𝑥 

Maximum quantity of process r to execute when 

opening the unit u at the period t. 

𝑑𝑢 
Delay in periods between the opening of the unit 

and its first production 

 

In all generality, a process taking place at the unit u can have a 

non-zero volume  

𝑣𝑟,𝑝,𝑢,𝑢′,𝑡,𝑡 for u’ different of u, but in our experiment that happens 

only for transportation processes. Similarly, a process taking place 

at time t can have non-zero volume 𝑣𝑟,𝑝,𝑢,𝑢,𝑡,𝑡′ for t’ different of t to 

express delays, however in our experiments it never happens as the 

periods are quite long. The only links that period shares involves 

the persistence unit that has been open in the past. Finally, note that 

as a convention a transportation process is linked to unit it 

originates from but that it is quite arbitrary. 

External products refer to all products that are not implicitly 

modeled by the model, or that are modeled but for which internal 

production may not be sufficient. 

 Objective function 

The objective function is formulated to obtain the optimized 

solution. In this model, the aim is to maximize a weighted 

combination of economic and environmental measures for a given 

logistics network and set of investment options. Since the model 

considers multiple criteria, the concept of "utility" is utilized, as it 

enables the incorporation of both economic and environmental 

factors. The model employs a utility function, which assigns 

weights to the profits and losses associated with each criterion. 

Additionally, the objective function integrates the diverse impacts 

stemming from external procurement and the implementation of 

new technologies. 

Table 4   Objective function 

𝑀𝑎𝑥𝑍

= ∑

𝑎∈𝐴

𝜌𝑎(∑

𝑝𝜖𝑃

∑

𝑡𝜖𝑇

∑

𝑡𝜖𝑇

𝑖𝑎,𝑟,𝑢,𝑡𝜔𝑟,𝑢,𝑡 

Score for criterion a 

associated to the use of 

recipe r in unit u at period t. 

−∑

𝑢𝜖𝑈

∑

𝑡𝜖𝑇

𝑦𝑎,𝑢,𝑡𝜎𝑢,𝑡) 
Score for criterion a 

associated with opening the 

unit u at period t. 
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 Constraints 

Table 5   Constraints 

∑

𝑢∈𝑈

−𝛼𝑝,𝑢,𝑡 ≤ 𝑞𝑝,𝑡∀𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 

(1) 

Equation 1 limits the quantity of external product used at each 

period t 

𝛼𝑝,𝑢,𝑡 = ∑

𝑟∈𝑅𝑢

∑

𝑢′∈𝑈

∑

𝑡′∈𝑇

𝑣𝑟,𝑝,𝑢′,𝑢,𝑡′,𝑡𝜔𝑟,𝑢,𝑡 

(2) 

Equation 2 defines the quantity of product p produced at unit u 

at time t 

𝛾𝑢,𝑡′ = ∑

𝑡∨𝑡≤𝑡′−𝑑𝑢

𝜎𝑢,𝑡 ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇 

(3) 

Equation 3 assures unit u is open du periods after opening 

𝛾𝑢,𝑡+1 ≥ 𝛾𝑢,𝑡, ∀𝑢 ∈ 𝑈, 𝑡 ∨ 𝑡 < |𝑇| − 1 (4) 

Equation 4 ensures that opening the unit u at time t keeps it 

opens afterward 

𝛾𝑢,𝑡𝑄𝑢,𝑡
𝑚𝑖𝑛 ≤ ∑

𝑟𝜖𝑅𝑢

𝜔𝑟,𝑢,𝑡

≤ 𝛾𝑢,𝑡𝑄𝑢,𝑡
𝑚𝑎𝑥∀𝑝𝜖𝑃, ∀𝑢𝜖𝑈, ∀𝑡𝜖𝑇 

(5) 

Equation 5 assures that a unit u executes the minimal and 

maximal quantity of the process r at time t if it opens at that 

time 

 

Case Study 

The proposed decision support model was applied to a long-

established forestry company, Chantiers Chibougamau Ltée 

(CCLtée), operating in the boreal forests of Quebec. The 

company's production network spans from the forest to the finished 

products, and it is distinguished by its diverse product portfolio, 

which includes not only lumber but also an array of engineered 

wood products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Scheme of the study case activities 

As illustrated in Figure 2, the company's offerings encompass I-

beams, glued laminated beams (glulam), and cross-laminated 

timber (CLT), in addition to the typical products and by-products 

of a traditional sawmill operation. 

The log wood supply for the company is sourced from the public 

forests of Quebec. The annual allocations of log wood are 

determined by the forestry ministry of the Quebec province, which 

necessitates a constraint on the wood and biomass supply in the 

model. The biomass volume is calculated as a percentage of the 

crowns and branches from the harvested trees. The forestry 

activities involve harvesting and transporting the wood to the plant. 

After sorting at the wood yard, the logs are sawn, generating a 

divergent process that yields bark, chips, sawdust, and green 

boards. The boards that are not sold green are then dried, and the 

resulting planks are planned. These activities constitute the primary 

transformation processes in a traditional sawmill. The secondary 

transformation activities include joining, assembling, laminating, 

and cross-lamination, which produce engineered wood products 

such as I-beams, glulam, and CLT. These engineered wood 

products have a higher value-added compared to lumber and offer 

environmental advantages as they can substitute more energy-

intensive building materials like steel and concrete. 

The company's operations also generate various by-products. The 

bark is transported to a nearby cogeneration facility (CHP), while 

the wood chips are utilized by the pulp and paper industry and sold 

to the highest bidder. A fraction of the planed material is employed 

to provide the energy required for the drying process, while the 

remaining planed material and the sawdust are combined with the 

wood chips. One of the key objectives of this analysis is to propose 

alternative uses for these by-products to enhance the company's 

economic and environmental performance. 

The following paragraphs present the parameters of the case study 

following the chronology of the methodological elements. 

Attributional Life-Cycle Assessment (A-LCA) 

An attributional life-cycle assessment, published in (Laurent et al., 

2016), was conducted to assess the environmental impact of the 

industrial partner's entire product portfolio from cradle to factory 

gate.  The system boundaries of the A-LCA were restricted to the 

activities under the control of the industrial partner, as the 

objective was to provide an environmental profile and identify 

potential areas for improvement. This does not preclude the 

subsequent addition of the "Gate-To-Grave" steps to conduct a 

comprehensive "Cradle-To-Grave" assessment, for instance for a 

building. 

The environmental impacts of the product portfolio were evaluated 

using a functional unit of the cubic meter of solid and over-dried 

wood input to the system, in line with the recommendations of the 

forest Product Category Rules, which utilize a volumetric basis for 

allocation (Institut Bauen und Umwelt eV, and The Norwegian 

EPD Foundation). The modeling was conducted using the LCA 

software SimaPro v7.0 (edited by Pre consultant). Primary data 

was used for the initial processing activities, while secondary 

activities were modeled using the ecoinvent database (version 2.2) 

(, adapted to the Quebec context. The IMPACT 2002+ (Jolliet et 

al., 2003) method was employed to quantify the environmental 

impacts. The primary reason for using this methodology was to 

obtain endpoint indicators, known as damage categories, which 

cover all environmental impacts in just four criteria (human health, 

ecosystem quality, climate change and consumption of resources). 
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Activity-Based Life-Cycle Costing (AB-LCC) 

The economic results used in this study were determined according to the principles of AB-LCC (Emblemsvåg, 2001). This method was chosen 

to create a parallel between the economic quantification and environmental assessment, facilitating the integration of the results from these two 

analyses into the optimization model. Using the same parameters as the A-LCA assessment, the costs of each activity, both in the forest and at 

the plant, were determined and published in (Laurent et al., 2021). These costs were allocated to the 15 products generated by the activities on a 

volumetric basis, the cubic meter of over-dry solid wood. 

Consequential Life-Cycle Assessment (C-LCA) 

The functional unit for this C-LCA assessment is the "prospective production of a forest product portfolio over a five-year horizon". This 

prospective production encompasses the current network of CCLtée, referred to as the baseline scenario, as well as the prospective technologies 

detailed in Table 1. 

The main guidelines on C-LCA recognize the substitution approach between different products that serve equivalent functions (Ekvall & 

Weidema, 2004). Accordingly, we have adopted a consequential approach that accounts for the substitution effects of using wood products 

instead of the materials typically employed in construction and energy production. The identified impacts associated with these substitutions are 

based on the most current practices in North America. Equivalences of service were calculated using volumes, as determined by the Athena 

Impact Estimator software (version 5.1) published by the Athena Institute. 

 I-Joint beams offer an alternative to the beams in steel structures that dominate light structure. 

 Wood glulam and CLT allow the construction of' massive frame (or heavy) which come into competition with the concrete. 

The environmental impacts were quantified by determining the equivalent amounts of steel and concrete required to replace the three engineered 

wood products. The ecoinvent database, with adaptations to the North American context, was utilized for this purpose. The IMPACT 2002+ 

method was employed to obtain the same four environmental damage categories as previously, namely human health, ecosystem quality, climate 

change, and resource consumption. 

The proposed model incorporates new technologies and their corresponding substitutions. Since the company CCLtée already produces 

engineering products, there is limited material available to integrate additional building materials. As a result, the focus has been on energy 

products. The energy equivalents are incorporated into the model using the parameter Lp, which accounts for the calorific values of different 

energy sources adjusted by a combustion efficiency factor, as this can vary depending on the fuel. The economic and environmental impacts 

have been quantified using the previously described methodologies. 

Table 6   Prospectives technologies 

New technologies 
Sources of environmental 

data 
Sources of economic data Substitution 

Biomass 

LCA of biomass harvested in 

the Matapedia Valley 

(Laurent & Dessureault, 

2015) 

(Desrochers, 2008)  

Industrial Pellet 
Specific data of a wood pellet 

company in Quebec (Laurent, 

2010) + ecoinvent (Version 

2.2) (Hedemann & König, 

2007) adapted to the Quebec 

context. 

(Brodeur et al., 2008; 

Pellet.org 2015; Scott 2012) 

Heavy fuel oil (# 6) 

Domestic Pellet Light oil 

Cogeneration use 

ecoinvent (Version 2.2) 

(Hedemann & König, 2007) 

adapted to Quebec context. 

(FPInnovations, FPAC 

(Forest Products Association 

of Canada, and CFS 

(Canadian service for ETS, 

2011; Hydro-Québec, 2015) 

-The thermal energy is 

used at the sawmill for 

drying 

-Electricity is modeled 

to be sent to the Hydro-

Québec 

network (Hydro-

Québec, 2015) 

Cellulosic ethanol 

Ethanol, 95% in H2O, from 

wood, at distillery / CH 

U (Althaus et al., 2007. 

Borrion, McManus, and 

Hammond, 2012; Murphy & 

Kendall 2015) 

(Edenhofer Pichs-Madruga 

and Sokona 2012; 

FPInnovations, FPAC (Forest 

Products Association of 

Canada, and CFS (Canadian 

service for ETS), 2011; Koch 

2008) 

Fossil fuel (can be sold 

or used internally in 

CCltée, pickups fuel per 

example) 

Biodiesel from pyrolytic Ecoinvent Ethanol production (Clark et al., 1999. Petro diesel (may be 
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oil adapted with confidential data FPInnovations, FPAC (Forest 

Products Association of 

Canada, & Canadian Forest 

Service, 2011; Meier & Faix 

1999; Wakker et al., 2005). 

sold or be used diesel 

machinery harvesting or 

handling) 

 

 

Multi-criteria optimization 

The primary data used for the environmental and economic 

analyses were based on annual average data provided by CCLtée. 

To account for interannual variations in recipes and the increase in 

annual costs, the model was constructed with 5 one-year periods. A 

discount rate of 2% was applied to all costs to express that 

immediate gain is more certain and consequently more desirable 

than future gain. To enhance the model's realism, constraints were 

added regarding the introduction of new technologies.  

To enhance the model's realism, constraints were added regarding 

the introduction of new technologies. A construction period was 

assumed for any facilities, resulting in a delay production capacity, 

equation 1. For example, cogeneration was estimated to have a 1-

year construction timeline, while ethanol and biodiesel facilities 

were projected to take 2 years to build. Due to the high installation 

costs, hundreds of millions of dollars, for ethanol and biodiesel 

technologies, a constraint was added to limit the implementation to 

only one of these two options. 

The multi-criteria optimization is conducted using the data from 

the consequential life-cycle assessment. The results generated 

directly from the CPLEX software version 12.5 (published by 

IBM) indicate the objective function value, as well as the material 

flows and technology deployment decisions. To explore the full 

range of potential solutions among the five criteria, an a posteriori 

analysis approach is adopted, wherein non-dominated solutions are 

generated by systematically varying the weights of the different 

criteria between 0 and 1 (Yalçınöz & Köksoy, 2007). This enables 

the creation of Pareto fronts, which are presented in the results 

section. 

Results 

The optimization model generated a substantial number of 

solutions, one for each scenarios (about 10^5) in a relatively short 

timeframe of less than 2 minutes. A scenario is a set of values of 

the five criterions. These experiments produced more than 150 

distinct solutions. However, it would not be appropriate to provide 

a detailed overview of all these solutions to decision-makers. 

Instead, this results section focuses on the most relevant solutions, 

which can be categorized into three parts: 

The first part graphically presents all non-dominated solutions, 

known as Pareto fronts; 

The second graphic is a pentagon that shows the solutions for all 

five criteria simultaneously, allowing us to determine whether any 

specific criterion is being neglected; 

The third part of this analysis presents the network scheme, 

including the flow of materials, the facility openings, and the 

carbon footprint and net profits. 

The results are presented in graphical form to facilitate 

visualization and aid decision-makers' understanding. The 

complexity of multi-criteria optimization (Greco et al., 2015) and  

 

 

the life cycle approach, especially when not using a single score to 

aggregate environmental impacts (Hermann et al., 2007), make 

understanding the results challenging. Presenting the results 

graphically addresses these complexities. Furthermore, the 

methodology of solution selection is based on the principle of 

comparison, which makes the results easier to interpret (Horne et 

al., 2009). The Pareto fronts enable the visualization of the 

optimization model results with respect to two criteria 

simultaneously. After selecting a small number of relevant 

solutions, the analysis of results is also apparent in a comparative 

approach between the selected solutions (Pereyra et al., 2013). 

The results presented are specific to the case study of the company 

CCLtée. While the scales have been preserved to demonstrate the 

potential gains across the different scenarios, the shape of the 

Pareto fronts obtained may be unique to the activities and context 

of CCLtée and could vary for another organization. For reasons of 

confidentiality, the abscissa graphs displaying the economic 

benefits have been removed from the presentation. 

Pareto fronts 

The non-dominated solutions, known as Pareto fronts, are 

presented to visualize the compromises between two criteria at a 

time, with the economic criterion as a common horizontal axis. The 

next four graphs show the results of future scenarios based on data 

from the industrial partner. The following paragraphs discuss the 

Pareto fronts representing the compromises between the economic 

criterion and climate change, human health, biodiversity, and 

resource consumption. 

 Compromise between the economic criterion and 

climate change 

The optimization model incorporates the findings of consequential 

life-cycle assessment, which accounts for substitution effects. 

Harvested wood products offer dual benefits in mitigating climate 

change. Timber retains approximately 50% of the sequestered 

carbon throughout the product's lifespan, and the processing of 

wood products requires less energy and generates fewer 

greenhouse gas emissions compared to traditional building 

materials like concrete and steel (Profft et al., 2009). By 

considering substitution effects, the avoidance of emissions makes 

wood products advantageous for addressing climate change. The 

substitution of fossil fuels with sustainably harvested biomass for 

energy could also be considered nearly "carbon neutral," though 

the greenhouse gas emissions generated during harvesting and 

processing of the biomass must be accounted for. Figure 3 depicts 

the Pareto front of non-dominated scenarios, representing the 

trade-off between the economic criterion and climate change. The 

point labeled S1 on the far left corresponds to the solution that 

maximizes the economic criterion, while the point denoted S4 at 

the bottom right represents the solution that maximizes carbon 

sequestration. The point S1407 is an intermediate solution that 

appears promising, as it can increase carbon sequestration while 

still maintaining a favorable economic outcome. 
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Figure 3 Pareto’s front presenting non dominated solution 

between economic and climate change criterion 

Variations on the economic criteria are more important than 

climate change. Indeed, the economic gains between the scenario 

maximizing carbon sequestration and that maximizing profits are 

higher than 60%. Between the two solutions, the carbon 

sequestration is increased by 10%. Indicatively, the change is in the 

order of 0.5E09 kg of CO2. That represents the consuming of about 

150 million liters of diesel. 

The optimization results indicate that variations in the economic 

criteria have greater significance than climate change 

considerations. The economic gains between the scenario that 

maximizes carbon sequestration and the one that maximizes profits 

exceed 60%. While moving from the profit-maximizing to the 

carbon sequestration-maximizing scenario increases carbon 

sequestration by approximately 10%, the corresponding economic 

benefits decrease substantially. Specifically, this shift in the 

scenario corresponds to a change in the order of 0.5 billion kg of 

CO2 sequestered, which is equivalent to the consumption of 

around 150 million liters of diesel fuel. 

The optimization results indicate that future solutions are 

increasingly favoring bioenergy production, which enables 

substantial reductions in greenhouse gas emissions. However, the 

type of bioenergy technology implemented has a significant 

influence on the required investment costs, thereby explaining the 

variations in profitability and costs associated with the economic 

criterion. 

 Compromise between economic criteria and human 

health 

The human health impact is measured in DALYs (Disability 

Adjusted Life Years), a metric used by the World Health 

Organization to quantify the loss in life expectancy. In this case 

study, the primary driver of human health damage is particulate 

matter emissions, specifically NOx and SO2, which are byproducts 

of incomplete combustion of fossil fuels, such as those used in 

adhesives. As mentioned, the prospective scenarios favor biofuel 

production, which reduces climate change impacts. This explains 

the correlation observed between the climate change and human 

health criteria, as reflected in the shapes of the Pareto frontiers 

shown in Figures 3 and 4. The Pareto frontier in Figure 4, which 

presents the trade-off between economic and human health 

considerations, indicates that the solutions on the border are not 

fully optimized, representing a compromise between economic and 

human health objectives. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Pareto’s Front between economic and human health 

criterion 

The Pareto frontier in Figure 4, which depicts the trade-off 

between economic and human health considerations, exhibits a 

characteristic bend at the top. This can be attributed to the human 

health impacts associated with the use of adhesives. Specifically, 

the scenario that aims to maximize economic revenue suggests 

producing I-beams at the maximum capacity, which directly leads 

to an increased consumption of adhesives in the OSB (oriented 

strand board) production process. This increased adhesive usage 

has a detrimental impact on human health, as reflected in the shape 

of the Pareto frontier. 

The difference in profitability between the solution that maximizes 

the economic criterion (S1) and the solution that minimizes the 

impact on human health (S2) is comparable to the difference 

observed in the previous figure, amounting to approximately 60%. 

However, the gains in terms of reducing human health impacts are 

slightly more substantial, at around 20%. 

 Compromise between the economic  and ecosystem 

quality criterion 

The ecosystem quality metric, expressed in PDF·m²·yr (Potentially 

Disappeared Fraction of species), quantifies the potential loss of 

biodiversity over a given area and time period. The primary driver 

of ecosystem impacts is the land use change and occupation 

associated with forest harvesting for wood procurement. The 

solution that minimizes ecosystem impacts (S3) suggests 

significantly reducing the harvested volume from forests. In this 

scenario, the biomass is utilized solely for cogeneration and 

industrial pellet production. The limited ecosystem impacts from 

the lower harvesting levels are offset by the benefits of energy 

substitution. However, this solution exhibits a roughly 65% 

shortfall in economic performance compared to the profit-

maximizing scenario (S1). 

 

 

 

 

 

 

 

Figure 5 Pareto’s front between economic and ecosystem quality 

criterion 
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 Compromise between economic criteria and resource 

consumption 

Figure 6 depicts the trade-off between economic considerations 

and resource consumption, the latter measured in gigajoules, an 

energy unit. The difference between the solutions that maximize 

economic gain (S1) and minimize resource  consumption (S5) is 

around 25% for both criteria. Furthermore, the Pareto front shows a 

clustering of non-dominated solutions in the region that favors 

resource consumption benefits. This solution consolidation can be 

attributed to the introduction of biofuel production technologies. 

The high investment costs associated with these technologies 

directly impact the potential profitability. 

 

 

 

 

 

 

 

 

Figure 6 Pareto’s front between economic and resource 

consumption criterion 

Analysis of selected scenarios 

The Pareto front analysis presented earlier was used to select a 

small number of solutions for further in-depth examination. For 

this discussion, we have chosen to highlight extreme solutions as 

well as an intermediate solution that offers an interesting result. To 

visualize the performance of these solutions across the five criteria, 

we generated pentagonal charts. When the results are weighted, 

this type of chart, as shown in Figure 7, provides a comprehensive 

overview of the analyzed solutions' performance across all criteria. 

A straightforward surface area calculation of the pentagon allows 

us to determine the scenario that achieves the best compromise 

among the five criteria. In the present case, the largest surface area 

is offered by Solution 1407, which was generated with a 93% 

weight of the economic criterion and a 7% weight of the climate 

change criterion. The solutions that minimize damage to climate 

change (S4) and human health (S2) were found to have very 

similar weighted results across the five criteria, with negligible 

differences between them. This led us to combine these two 

solutions in the chart. However, it is important to note that the 

material flows of these two solutions are not precisely the same. 

Figure 7 Pentagon with the weighted results of the 5 criteria 

Network diagram 

In addition to the pentagon chart, network diagrams were used to 

provide a more concrete representation of the solutions modifying 

the logistics network. As shown in Figure 8, these network 

diagrams illustrate the flow of materials (line thickness) and the 

technologies that were implemented. The network diagrams also 

include the net profit and net greenhouse gas emissions associated 

with each solution. Net profit is calculated by subtracting total 

costs from the revenue generated by selling products, while net 

GHG emissions represent the actual impacts of the proposed 

solution's activities, without considering substitution effects. 

Unlike the raw results of the multi-criteria optimization, which 

were determined using a consequential approach, these results 

provide an attributional perspective on the real impacts of 

implementing the proposed solutions. This information is 

considered relevant for decision-makers. 

The network diagrams and calculations were generated for all 

scenarios using a Python script. In this section, only the solution 

for Scenario 1407 is presented, to avoid overloading the document. 

However, to illustrate the impacts of implementing new 

technologies, the optimized initial scenario for Scenario 1407 is 

also presented. Unlike the prospective scenarios, the initial 

scenarios only optimize the flow of materials, and do not allow the 

implementation of new technologies. 

 Optimized prospective solution 

The network diagram for Solution 1407, depicted in Figure 8, 

showcases the proposed model's incorporation of new 

technologies. The dotted frame surrounding the original plant 

layouts delineates the areas where these novel technologies have 

been integrated. 

 

 

 

 

 

 

 

 

 

 

Figure 8 Material flow network of the solution 1407 

The proposed solution involves harvesting forest biomass and 

utilizing it to power the cogeneration plant. The thermal output 

from the cogeneration plant is used for drying, while the generated 

electricity is sold to the national grid. The remaining biomass is 

used to produce industrial-grade wood pellets, which are then sold 

as a substitute for heavy fuel oil. Additionally, the white matter 

(without bark) from wood shavings is densified and bagged for sale 

as a higher-priced domestic wood pellet product. This scenario also 

includes the production of biodiesel, which is used directly in the 

forestry equipment and logging trucks. 

 Optimized initial scenario 

Figure 9 illustrates the outcome of the optimized initial scenario, in 

which the introduction of new technologies was not allowed, and 
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the decision variable was restricted to material flow. As depicted, 

all products are sold directly. The energy products generated in the 

prospective scenario, however, increase the added value of these 

resources, resulting in a doubling of expected profitability for the 

company. This finding emphasizes the merit of the proposed 

implementation of new technologies presented previously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9  Material flow network of the optimized initial scenario 

(without allow the model to open prospectives technologies) 

As depicted in the histograms in Figures 8 and 9, this solution 

enables a doubling of profits compared to the optimized baseline 

scenario, without significantly increasing greenhouse gas 

emissions. This is achieved through the implementation of biofuel 

production and internal utilization. 

Discussion 

The costs of reducing greenhouse gas emissions through the 

implementation of new technologies can be calculated by 

subtracting the gains from the initial scenarios (without new 

technology) from the prospective scenarios. Using these results, a 

marginal abatement cost curve was generated, as shown in Figure 

10. The marginal abatement cost curve (MACC) is a graphical 

representation that explicitly displays the cost associated with the 

implementation of a technology for reducing GHG emissions, 

expressed as a percentage relative to a reference scenario (Kesicki 

and Strachan, 2011). 

Figure 10   Marginal Abatement Costs Curve 

The MACC indicates that 89% of the proposed scenarios reduce 

greenhouse gas emissions while increasing profits, as shown by the 

point where the curve intersects the horizontal axis. A closer 

examination of the MACC reveals that 99% of the scenarios have a 

cost of less than CAD 50 per ton of CO2 equivalent. 

The MACC presented in this study could be useful not only for 

industry, but also for government policy makers in the context of 

climate change mitigation and carbon pricing. By conducting 

similar analyses and generating MACCs, policymakers may be 

able to reduce uncertainty around the appropriate carbon price to 

facilitate the implementation of new emissions-reducing 

technologies. Based on the findings of this specific case study, a 

carbon price of CAD 25 per ton of CO2 equivalent would enable 

the implementation of 98% of the proposed technological 

solutions. 

Conclusion 

The objective of this research project is to provide a tool for 

strategic decision which is distinguished by its retrospective 

approach and by using the result of economic and environmental 

analysis to anticipate changes based on specific data. The results 

demonstrate that the integration of environmental criteria to 

generate solutions that would not have been visible only looking at 

the economic aspects and probably also by aggregating all 

environmental criteria into a single score. The proposed approach 

presents a panel of compromises between each of the optimized 

criteria. This will offer decision makers a more complete picture of 

opportunities, which can thus allow them to make a more informed 

decision in the planning of future developments. 

Multi-criteria optimization presented here integrates economic and 

environmental aspects only. As a tool for decision support covering 

the whole sustainable development, it would need to integrate to 

social aspects through a Social Life-Cycle Assessment (Kloepffer, 

2008; UNEP 2020), or sustainable assessments (Sala et al, 

2015). Although these are implicit in the case of this study, as in 

remote regions of Quebec, good corporate economic health allows 

benefits to the entire local community. The development of Social 

Life-Cycle Assessment has already been underway for a few years 

now, and so when it will be extended it will provide representative 

quantifications despite contextualization difficulties (Wulf et al., 

2019). Therefore, adding criteria to the optimization model should 

not present difficulties, other than when interpreting the results. 

Another potential improvement would be to provide a robust 

solution int a stochastic model by integrating uncertainty into the 

proposed solutions represents an additional challenge. Both 

Attributional Life-Cycle assessment and Activity-Based Life-Cycle 

Costing have yielded uncertainty estimates for the results. 

However, the mixed-integer linear programming approach 

employed makes it difficult to easily determine the shadow costs of 

the optimal solutions. Adopting a stochastic optimization 

framework could provide a more robust evaluation of the solution 

alternatives, accounting for the uncertainties in the input 

parameters and modeling assumptions. This would allow decision-

makers to better comprehend the risks and trade-offs associated 

with the different options. 

Acknowledgements 

We thank the FORAC team for their financial and administrative 

support. We also acknowledge the contributions of Gregory 

Paradis, who provided programming assistance in Python, and 



64 | P a g e  
 

Philippe Marier, who helped revise the mathematical model. We 

are grateful to the CIRAIG team, particularly Laure Patouillard, 

Jean-Francois Menard, and Pascal Lesage, for their support in 

conducting the Consequential Life-Cycle assessment. Furthermore, 

we are thankful to Chantiers Chibougameau Ltée for their trust and 

for sharing all the data requested, which allowed us to conduct this 

study with their primary data. 

References  

1. Arvidsson, R., Tillman, A. M., Sandén, B. A., Janssen, 

M., Nordelöf, A., Kushnir, D., & Molander, S. (2018). 

Environmental assessment of emerging technologies: 

recommendations for prospective LCA. Journal of 

Industrial Ecology, 22(6), 1286-1294. 

2. Asiedu, Y., & Gu, P. (1998). Product life cycle cost 

analysis: state of the art review. International journal of 

production research, 36(4), 883-908. 

3. Azapagic, A., & Clift, R. (1999). Life cycle assessment 

and multiobjective optimisation. Journal of cleaner 

production, 7(2), 135-143. 

4. Azevedo, S. G., Carvalho, H., & Machado, V. C. (2011). 

The influence of green practices on supply chain 

performance: A case study approach. Transportation 

research part E: logistics and transportation 

review, 47(6), 850-871. 

5. Ballou, R. H. (1997). Business logistics: importance and 

some research opportunities. Gestão & Produção, 4, 

117-129. 

6. Bernier, E., Maréchal, F., & Samson, R. (2013). Life 

cycle optimization of energy-intensive processes using 

eco-costs. The International Journal of Life Cycle 

Assessment, 18, 1747-1761. 

7. Bisinella, V., Christensen, T. H., & Astrup, T. F. (2021). 

Future scenarios and life cycle assessment: systematic 

review and recommendations. The International Journal 

of Life Cycle Assessment, 1-28. 

8. Biuki, M., Kazemi, A., & Alinezhad, A. (2020). An 

integrated location-routing-inventory model for 

sustainable design of a perishable products supply chain 

network. Journal of cleaner production, 260, 120842. 

9. Biuki, M., Kazemi, A., & Alinezhad, A. (2020). An 

integrated location-routing-inventory model for 

sustainable design of a perishable products supply chain 

network. Journal of cleaner production, 260, 120842. 

10. Bowersox, D. J., & Calantone, R. J. (1998). Executive 

insights: global logistics. Journal of International 

Marketing, 6(4), 83-93. 

11. Cerri, D., Taisch, M., & Terzi, S. (2013). Multi-objective 

optimization of product life-cycle costs and 

environmental impacts. In Advances in Production 

Management Systems. Competitive Manufacturing for 

Innovative Products and Services: IFIP WG 5.7 

International Conference, APMS 2012, Rhodes, Greece, 

September 24-26, 2012, Revised Selected Papers, Part 

I (pp. 391-396). Springer Berlin Heidelberg. 

12. Corona, B., Shen, L., Sommersacher, P., & Junginger, 

M. (2020). Consequential Life Cycle Assessment of 

energy generation from waste wood and forest residues: 

The effect of resource-efficient additives. Journal of 

Cleaner Production, 259, 120948. 

13. Čuček, L., Drobež, R., Pahor, B., & Kravanja, Z. (2011). 

Sustainable LCA-based MIP synthesis of biogas 

processes. In Computer Aided Chemical 

Engineering (Vol. 29, pp. 1999-2003). Elsevier. 

14. Curran, M. A. (2004). The status of life‐cycle assessment 

as an environmental management tool. Environmental 

Progress, 23(4), 277-283. 

15. Daskin, M. S. (1985). Logistics: an overview of the state 

of the art and perspectives on future 

research. Transportation Research Part A: 

General, 19(5-6), 383-398. 

16. Demir, E., Syntetos, A., & Van Woensel, T. (2022). Last 

mile logistics: Research trends and needs. IMA Journal 

of Management Mathematics, 33(4), 549-561. 

17. Durairaj, S. K., Ong, S. K., Nee, A. Y., & Tan, R. B. 

(2002). Evaluation of life cycle cost analysis 

methodologies. Corporate Environmental Strategy, 9(1), 

30-39. 

18. Ekvall, T., & Weidema, B. P. (2004). System boundaries 

and input data in consequential life cycle inventory 

analysis. The international journal of life cycle 

assessment, 9, 161-171. 

19. Emblemsvag, J. (2001). Activity‐based life‐cycle 

costing. Managerial Auditing Journal, 16(1), 17-27. 

20. Esmizadeh, Y., & Mellat Parast, M. (2021). Logistics 

and supply chain network designs: incorporating 

competitive priorities and disruption risk management 

perspectives. International Journal of Logistics Research 

and Applications, 24(2), 174-197. 

21. Fei, H., Li, Q., & Sun, D. (2017). A survey of recent 

research on optimization models and algorithms for 

operations management from the process view. Scientific 

Programming, 2017(1), 7219656. 

22. Gluch, P., & Baumann, H. (2004). The life cycle costing 

(LCC) approach: a conceptual discussion of its 

usefulness for environmental decision-making. Building 

and environment, 39(5), 571-580. 

23. Branke, J., Corrente, S., Greco, S., Kadzinski, M., 

Lopez-Ibanez, M., Mousseau, V., ... & Slowinski, R. 

(2015). Modeling Behavior-Realistic Artificial Decision-

Makers to Test Preference-Based Multiple Objective 

Optimization Methods: Report of Working Group# 1. 

24. Halffmann, P., Schäfer, L. E., Dächert, K., Klamroth, K., 

& Ruzika, S. (2022). Exact algorithms for multiobjective 

linear optimization problems with integer variables: A 

state of the art survey. Journal of Multi‐Criteria Decision 

Analysis, 29(5-6), 341-363. 

25. Hermann, B. G., Kroeze, C., & Jawjit, W. (2007). 

Assessing environmental performance by combining life 

cycle assessment, multi-criteria analysis and 

environmental performance indicators. Journal of 

cleaner production, 15(18), 1787-1796. 

26. Horne, R., Grant, T., & Verghese, K. (2009). Life cycle 

assessment: principles, practice, and prospects. Csiro 

Publishing. 

27. Hurmekoski, E., Jonsson, R., Korhonen, J., Jänis, J., 

Mäkinen, M., Leskinen, P., & Hetemäki, L. (2018). 

Diversification of the forest industries: role of new 

wood-based products. Canadian Journal of Forest 

Research, 48(12), 1417-1432. 

28. Jayarathna, C. P., Agdas, D., Dawes, L., & Yigitcanlar, 

T. (2021). Multi-objective optimization for sustainable 

supply chain and logistics: A 

review. Sustainability, 13(24), 13617. 



65 | P a g e  
 

29. Jessop, P. G., & MacDonald, A. R. (2023). The need for 

hotspot-driven research. Green Chemistry, 25(23), 9457-

9462. 

30. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, 

J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 

2002+: a new life cycle impact assessment 

methodology. The international journal of life cycle 

assessment, 8, 324-330. 

31. Kellner, F., Lienland, B., & Utz, S. (2019). An a 

posteriori decision support methodology for solving the 

multi-criteria supplier selection problem. European 

Journal of Operational Research, 272(2), 505-522. 

32. Kesicki, F., & Strachan, N. (2011). Marginal abatement 

cost (MAC) curves: confronting theory and 

practice. Environmental science & policy, 14(8), 1195-

1204. 

33. Klöpffer, W. (2008). Life cycle sustainability assessment 

of products: (with Comments by Helias A. Udo de Haes, 

p. 95). The International Journal of Life Cycle 

Assessment, 13, 89-95. 

34. Chen, I. J., Paulraj, A., & Lado, A. A. (2004). Strategic 

purchasing, supply management, and firm 

performance. Journal of operations management, 22(5), 

505-523. 

35. Kostin, A. M., Guillén-Gosálbez, G., Mele, F. D., 

Bagajewicz, M. J., & Jiménez, L. (2012). Design and 

planning of infrastructures for bioethanol and sugar 

production under demand uncertainty. chemical 

engineering research and design, 90(3), 359-376. 

36. Laurent, A., Beauregard, R., & D’Amours, S. (2021). 

Activity-based life-cycle costing applied to an innovative 

forestry company product portfolio. Journal of 

Entrepreneurship, Management and Innovation, 6(1), 6-

26. https://doi.org/10.14254/jems.2021.6-1.1 

37. Laurent, A., Ménard, J., Lesage, P., & Beauregard, R. 

(2016). Cradle-to-gate environmental life cycle 

assessment of the portfolio of an innovative forest 

products manufacturing unit. BioResources, 11(4), 8981-

9001.               https://doi.org/10.15376/biores.11.4.8981-

9001 

38. Lesage, P., & Müller, S. (2017). Life cycle inventory: An 

in-depth look at the modeling, data, and available tools. 

In M. A. Curran (Ed.), Goal and Scope Definition in Life 

Cycle Assessment (pp. 267-275). Elsevier. 

https://doi.org/10.1016/b978-0-12-409548-9.10066-1 

39. Lu, H. (2010). Logistics configuration design in the 

context of green supply chain. In Proceedings of the 

2010 International Conference on Logistics and 

Industrial Informatics (pp. 387-393). 

https://doi.org/10.1061/41139(387)43 

40. Luu, Q. L., Longo, S., Cellura, M., Sanseverino, E. R., 

Cusenza, M. A., & Franzitta, V. (2020). A conceptual 

review on using Consequential Life cycle assessment 

Methodology for the energy sector. Energies, 13(12), 

3076. https://doi.org/10.3390/en13123076 

41. Moni, S., Mahmud, R., High, K., & Carbajales‐Dale, M. 

(2019). Life cycle assessment of emerging technologies: 

A review. Journal of Industrial Ecology, 24(1), 52-63.

     

https://doi.org/10.1111/jiec.12965 

42. Nagurney, A., & Nagurney, L. S. (2010). Sustainable 

supply chain network design: A multicriteria perspective. 

International Journal of Sustainable Transportation, 3(3), 

189-197. https://doi.org/10.1080/19397038.2010.491562 

43. Neto, J. Q. F., Bloemhof‐Ruwaard, J. M., van Nunen, J., 

& van Heck, E. (2008). Designing and evaluating 

sustainable logistics networks. International Journal of 

Production Economics, 111(2), 195-208. 

https://doi.org/10.1016/j.ijpe.2006.10.014 

44. Paul, A., Shukla, N., Paul, S. K., & Trianni, A. (2021). 

Sustainable Supply Chain Management and Multi-

Criteria Decision-Making Methods: A Systematic 

Review. Sustainability, 13(13), 7104. 

https://doi.org/10.3390/su13137104 

45. Pereyra, V., Saunders, M. A., & Castillo, J. E. (2013). 

Equispaced Pareto front construction for constrained bi-

objective optimization. Mathematical and Computer 

Modelling, 57(9-10), 2122-2131. 

https://doi.org/10.1016/j.mcm.2010.12.044 

46. Petersen, A. K., & Solberg, B. (2005). Environmental 

and economic impacts of substitution between wood 

products and alternative materials: A review of micro-

level analyses from Norway and Sweden. Forest Policy 

and Economics, 7(3), 249-259. 

https://doi.org/10.1016/s1389-9341(03)00063-7 

47. Postlethwaite, D. (1994). Development of life cycle 

assessment (LCA). International Journal of Life Cycle 

Assessment, 1(1), 54-55. 

https://doi.org/10.1007/bf02986926 

48. Prado, V., Seager, T. P., & Guglielmi, G. (2022). 

Challenges and risks when communicating comparative 

LCA results to management. International Journal of Life 

Cycle Assessment, 27(9-11), 1164-1169. 

https://doi.org/10.1007/s11367-022-02090-5 

49. Profft, I., Mund, M., Weber, G., Weller, E., & Schulze, 

E. D. (2009). Forest management and carbon 

sequestration in wood products. European Journal of 

Forest Research, 128(4), 399-413. 

https://doi.org/10.1007/s10342-009-0283-5 

50. Rees, M., & Wang, Q. (2014). Design and analysis of a 

sustainable multi-objective distribution network using 

simulation-based optimisation. Proceedings of the ASME 

2014 International Design Engineering Technical 

Conferences and Computers and Information in 

Engineering Conference. 

https://doi.org/10.1115/detc2014-34957 

51. Rivallain, M., Lege, P., Baverel, O., & Peuportie, B. 

(2012). Decision aiding and multi-criteria optimization 

for existing buildings holistic retrofit. Building and 

Environment, 1084-1092.                    

https://hal-mines-paristech.archives-ouvertes.fr/hal-

00769827 

52. Sala, S., Ciuffo, B., & Nijkamp, P. (2015). A systemic 

framework for sustainability assessment. Ecological 

Economics, 119, 314–325. 

https://doi.org/10.1016/j.ecolecon.2015.09.015 

53. Schaubroeck, S., Schaubroeck, T., Baustert, P., Gibon, 

T., & Benetto, E. (2020). When to replace a product to 

decrease environmental impact?—A consequential LCA 

framework and case study on car replacement. 

International Journal of Life Cycle Assessment, 25(8), 

1500-1521.       

https://doi.org/10.1007/s11367-020-01758-0 



66 | P a g e  
 

54. Schaubroeck T (2023) Relevance of attributional and 

consequential life cycle assessment for society and 

decision support. Frontiers in Sustainability, 4.                       

https://doi: 10.3389/frsus.2023.1063583 

55. Schmidt, G., & Wilhelm, W. E. (2000). Strategic, 

tactical, and operational decisions in multi-national 

logistics networks: A review and discussion of modelling 

issues. International Journal of Production Research, 

38(7), 1501-1523.   

https://doi.org/10.1080/002075400188690 

56. Shekarian, E., Ijadi, B., Zare, A., & Majava, J. (2022). 

Sustainable Supply Chain Management: A 

Comprehensive Systematic Review of Industrial 

Practices. Sustainability, 14(13), 7892. 

https://doi.org/10.3390/su14137892 

57. Srivastava, S. K. (2007). Green supply‐chain 

management: A state‐of‐the‐art literature review. 

International Journal of Management Reviews, 9(1), 53-

80. https://doi.org/10.1111/j.1468-2370.2007.00202.x 

58. Tan, K. C., Lyman, S. B., & Wisner, J. D. (2002). Supply 

chain management: A strategic perspective. International 

Journal of Operations & Production Management, 22(6), 

614-631. https://doi.org/10.1108/01443570210427659 

59. Thonemann, N., Schulte, A., & Maga, D. (2020). How to 

conduct prospective life cycle assessment for emerging 

technologies? A systematic review and methodological 

guidance. Sustainability, 12(3), 1192-1192. 

https://doi.org/10.3390/su12031192 

60. Norris, B., Traverso, C., Neugebauer, M., Ekener, S., 

Schaubroeck, E., Russo Garrido, T., Berger, S., Valdivia, 

M., Lehmann, S., Finkbeiner, M., & Arcese, G. (2018). 

Guidelines for Social Life Cycle Assessment of Products 

and Organizations 2020. ((eds.). United Nations 

Environment Programme (UNEP).). (eds.). United 

Nations Environment Programme (UNEP). 

https://www.lifecycleinitiative.org/wp-

content/uploads/2021/01/Guidelines-for-Social-Life-

Cycle-Assessment-of-Products-and-Organizations-2020-

22.1.21sml.pdf 

61. Vaskan, P., Guillén‐Gosálbez, G., Türkay, M., & 

Jiménez, L. (2014). Multiobjective optimization of utility 

plants under several environmental indicators using an 

MILP-based dimensionality reduction approach. 

Industrial & Engineering Chemistry Research, 53(50), 

19559-19572.  https://doi.org/10.1021/ie5020074 

62. Vila, D., Martel, A., & Beauregard, R. (2006). Designing 

logistics networks in divergent process industries: A 

methodology and its application to the lumber industry. 

International Journal of Production Economics, 102(2), 

358-378.       https://doi.org/10.1016/j.ijpe.2005.03.011 

63. Wang, F., Lai, X., & Shi, N. (2011). A multi-objective 

optimization for green supply chain network design. 

Decision Support Systems, 51(2), 262-269. 

https://doi.org/10.1016/j.dss.2010.11.020 

64. Wang, Z., & Rangaiah, G. P. (2017). Application and 

analysis of methods for selecting an optimal solution 

from the Pareto-optimal front obtained by multiobjective 

optimization. Industrial & Engineering Chemistry 

Research, 56(2), 560-574. 

https://doi.org/10.1021/acs.iecr.6b03453 

65. Wulf, C., Werker, J., Ball, C., Zapp, P., & 

Kuckshinrichs, W. (2019). Review of sustainability 

assessment approaches based on life cycles. 

Sustainability, 11(20), 5717-5717.  

https://doi.org/10.3390/su11205717 

66. Yalçınöz, T., & Köksoy, O. (2007). A multiobjective 

optimization method to environmental economic 

dispatch. International Journal of Electrical Power & 

Energy Systems, 29(1), 42-50. 

https://doi.org/10.1016/j.ijepes.2006.03.016 

67. Zavadskas, E. K., Pamučar, D., Stević, Ž., & Mardani, A. 

(2020). Multi-criteria decision-making techniques for 

improvement sustainability engineering processes. 

Symmetry, 12(6), 986-986. 

https://doi.org/10.3390/sym120609.  

https://doi.org/10.3390/sym120609

