
GRS Journal of Multidisciplinary Research and Studies
Abbriviate Tittle- GRS J Mul Res Stud

ISSN (Online)- 3049-0561
https://grspublisher.com/journal-details/GRSJ

1 | P a g e

Vol-2, Iss-4 (Apr- 2025)

Advances in Dense Linear Algebra: From Gauss to Strassen
Moumouni Djassibo Woba

1
, Zoungrana Amidou

2
, Zongo Moumouni

3
,

 1Université Lédéa Bernard OUEDRAOGO (B.F)
2,3Université Norbert ZONGO, (B.F)

*Corresponding Author : Moumouni Djassibo Woba

“Université Lédéa Bernard OUEDRAOGO (B.F)”

Abstract: Linear algebra lies at the core of many algorithmic problems. Standard matrix multiplication and the Gaussian elimination

method have arithmetic complexity that is cubic in terms of input size. In this article, we show that for most dense linear algebra

problems—multiplication, inversion, determinant, system solving—more efficient algorithms exist with strictly sub-cubic complexity.

Keywords: Algorithms, matrix, Linear algebra, Multiplication, Determinant.

Introduction

In mathematics, it is customary to consider a problem trivial once it

has been reduced to a question of linear algebra. However, from a

computational perspective, the efficiency of matrix operations

remains a critical concern.

The algorithmic challenges in linear algebra hide very subtle

difficulties. Generally, the first questions encountered when

working with matrices concern the efficient computation of matrix-

matrix products, matrix-vector products, inverses, and system

solving. The answers to these questions vary significantly

depending on the type of matrices involved. A possible

classification is as follows:

 Dense Matrices: These are arbitrary matrices with no

particular structure. We will see that dense matrix

algorithms can essentially be reduced to matrix

multiplication, whose complexity is an extremely

delicate question.

 Sparse Matrices: Many linear problems are formulated in

terms of matrices with a large number of zero entries,

called sparse matrices. In such cases, dense algorithms

are inappropriate; it is possible to exploit sparsity using

better-suited tools based on linear recurrences.[1]

 Structured Matrices: There exist specific families of

matrices often as- sociated with linear mappings between

polynomial spaces, such as Sylvester- type matrices for

resultants, Vandermonde-type matrices for evaluation

and interpolation, Toeplitz and Hankel-type matrices for

Padé and Padé–Hermite approximations, etc. For these

well-identified types of matrices, either ad-hoc

algorithms or a unified theory based on the concept of

displacement rank are developed.

Schematically, dense matrix algorithms are the slowest, with

complexity ranging between 𝑂(𝑛2) and 𝑂(𝑛3) for size 𝑛

The complexity of computations involving sparse matrices is

approximately 𝑂(𝑛2), while that of structured matrices is 𝑂(𝑛), up

to logarithmic factors.

The focus of this article is on dense matrix algorithms. We will

work over an effective field denoted by 𝕂 and with the algebra of

square matrices 𝑀𝑛(𝕂) with coefficients in 𝕂. Note, however,

that most results in this article extend to the case where the field

𝕂 is replaced by an effective ring A, and square matrices are

replaced by rectangular matrices with coefficients in A.

The questions addressed or mentioned in this article include the

complexity of computing matrix multiplication in 𝑀𝑛(𝕂),

inverses, determinants, characteristic or minimal polynomials,

solving linear systems, and putting matrices into various canonical

forms (row-echelon form, LUP decomposition, block companion

form, etc.).

For these questions, we have a first family of naive algorithms

based on direct application of definitions or mathematical

properties. While the naive algorithm for multiplication has

reasonable cubic complexity, in other cases the use of naive

algorithms is strongly discouraged. For example, if 𝐴 =

 (𝑎𝑖,𝑗)𝑖,𝑗=1
𝑛 is a matrix in 𝑀𝑛(𝕂), we would not use the definition

𝑒𝑡(𝐴) = ∑ sgn(𝜎) ∏ 𝒶𝑖,𝜎(𝑖)

𝑛

𝑖=1σ ∈ Sn

to compute its determinant; indeed, this would lead to an algorithm

with complexity 𝑂(𝑛. 𝑛!), which is hyper-exponential in the size

of A. Similarly, defining the rank of a matrix as the size of the

largest non-zero minor does not lend itself directly to efficient

algorithmization via exhaustive search. In a slightly different vein,

Cramer’s formulas for solving a system. Classical linear algebra

algorithms are not of great practical utility (however, they serve to

bound solution sizes and are often useful in complexity estimates).

A second class of algorithms, based on Gaussian elimination,

allows most of the above-mentioned problems to be solved

reasonably efficiently. Applied to a matrix A in 𝑀𝑛(𝕂), this

method provides algorithms with 𝑂(𝑛3) complexity for computing

the rank 𝑟𝑔(𝐴), the determinant 𝑑𝑒𝑡(𝐴), the inverse 𝐴−1 (if A is

invertible), row-echelon form, LUP decomposition of A, and

solving a linear system with matrix A.

The main result of this article is that we can do better, and there

exists a constant 2 ≤ 𝜔 < 3 (dependent a priori on the base field

fyjugykigksrdr Received: 20.02.2025 Accepted: 28.03.2025 Published: 01.04.2025

https://grspublisher.com/journal-details/GRSJ

2 | P a g e

𝕂) that governs the complexity of matrix multiplication and all

linear algebra operations.

To formalize this point, we associate an exponent with each

problem. In the case of multiplication, it is defined as follows:

Definition

A real number 𝜃 is said to be a feasible exponent for matrix

multiplication over the field 𝕂 if there exists an algorithm with

arithmetic complexity 𝑂(𝑛𝜃) to multiply two arbitrary matrices

in 𝑀𝑛(𝕂). We define 𝜔mul = 𝑖𝑛𝑓{𝜃 | 𝜃 is a feasible

exponent}.

A priori, we should include the field 𝕂 as an index for the

exponents θ and 𝜔mul. However, the results presented hereafter are

independent of 𝕂. The naive algorithm for multiplication has

complexity 𝑂(𝑛3), so 𝜃 = 3 is a feasible exponent and 𝜔mul ≤ 3.

On the other hand, 𝜔mul must be at least 2: the number of elements

in a matrix is 𝑛2, and at least that many operations are needed to

write it down.

We can similarly define exponents for all other problems, such as

𝜔inv for inversion, 𝜔polcar for the characteristic polynomial,

𝜔det for the determinant, 𝜔LUP for LUP decomposition, etc. We

then have the following result.[2]

Theorem

The exponents 𝜔mul, 𝜔inv, 𝜔polcar, 𝜔det , and 𝜔LUPare all equal

and strictly less than 2.38; we denote by 𝜔 their common value.

The exponent corresponding to solving linear systems is less than

or equal to 𝜔.

This theorem contains two types of results:

 Proofs of equivalence between problems.

 Upper bounds on their complexity, i.e., algorithms.[3]

We will show that 𝜔det ≤ 𝜔polcar ≤ 𝜔mul = 𝜔inv and 𝜔inv ≤

 𝜔det , which allows us to conclude that this chain of inequalities is

actually a chain of equalities.

Applications

The linear algebra problems discussed above are encountered

frequently in practice; the results of the Theorem will be invoked

repeatedly in this article. For example, the Beckermann–Labahn

algorithm for computing Padé–Hermite approximants ultimately

relies on multiplying polynomial matrices. The same applies to

Storjohann’s algorithm for solving polynomial linear systems and

the algorithm for finding series solutions of algebraic or linear

differential equations.

Many polynomial system-solving algorithms also rely on linear

algebra: Gröbner basis computation methods can be reduced to

large sparse linear systems (eventually); the complexity results we

provide for Gröbner basis computations rely on fast row-echelon

form computations; the geometric resolution algorithm uses a

Newton iteration involving the inversion of formal power series

matrices.[4].

In a different context, polynomial factorization algorithms,

algorithms for differentially finite series, and

summation/integration algorithms all involve solving linear

systems as a subproblem. Linear algebra lies at the heart of many

other algorithmic problems not covered in this work, such as

integer factorization or discrete logarithm in cryptanalysis.

Finally, note that a large portion of the world’s computers spend

their cycles performing linear algebra computations, whether for

combinatorial optimization (linear programming via the simplex

algorithm), numerical simulation (finite element methods), or web

page ranking (Google’s PageRank system, which relies on finding

an eigenvector of a massive sparse matrix).

Matrix multiplication

Like integer and polynomial multiplication, matrix multiplication

is a funda- mental operation in computer algebra, whose

complexity analysis turns out to be highly non-trivial.

The naive algorithm for multiplying an 𝑚 × 𝑛 matrix by an n-

dimensional vector uses 𝑂(𝑚𝑛) arithmetic operations: 𝑚𝑛

multiplications and 𝑚(𝑛 − 1) additions. A result by Winograd

states that in general, we cannot do better: for real matrices with

algebraically independent coefficients over ℚ, the naive algorithm

is optimal. Since matrix multiplication can be interpreted as a

sequence of matrix-vector products, a natural question is whether

the naive matrix multiplication is also nearly optimal.

The answer to this question, along with the most important results

of this section (listed chronologically), are compiled in the

following theorem.

Theorem

The naive matrix multiplication is not optimal. Let 𝕂 be a field.

Two matrices in 𝑀𝑛(𝕂) can be multiplied using:

1. 𝑂(𝑛3) operations in 𝕂, via the naive algorithm.

2. [𝑛2 𝑛2

2
] + 2𝑛 [

𝑛2

2
] ≈

1

2
𝑛3 + 𝑛2 multiplications in K.

3. [𝑛2 𝑛2

2
] + (2𝑛 − 1)[

𝑛2

2
] ≈

1

2
𝑛3 + 𝑛2 multiplications in

𝕂 if the characteristic of 𝕂 is not 2 and division by 2 is

free.

4. 𝑂(𝑛𝑙𝑜𝑔2 7) ≈ 𝑂(𝑛2.81) operations in 𝕂.[5].

These results hold over a commutative ring A; for (1) and (4), the

commutativity assumption can even be dropped. Part (2) is due to

Winograd and was historically the first improvement over the

naive algorithm. It halves the number of multiplications but

increases the number of additions. This constitutes progress for a

wide class of rings A where multiplication is more costly than

addition.

For example, the binary splitting technique requires multiplying

matricescontaining large integers.

The improvement (3) was obtained by Waksman, showing that two

2 × 2 matrices can be multiplied in 7 multiplications. The

common drawback of Wino- grads and Waksman’s algorithms is

their use of 𝕂’s commutativity, which be- comes an obstacle to

recursive application, preventing further improvement on the upper

bound of 𝜔mul. Many believed that results like (2) and (3) were

optimal, in the sense that
1

2
 𝑛3 multiplications in 𝕂 would be

required for multiplication in 𝑀𝑛(𝕂). This was disproven by

Strassen’s discovery of (4), which follows from a surprisingly

simple yet far-reaching insight: two 2 × 2 matrices can be

multiplied in 7 multiplications even if 𝕂 is non-commutative.

The non-optimality of the naive matrix multiplication justifies

introducing the following definition.

Definition

3 | P a g e

An application 𝑀𝑀 ∶ ℕ → ℕ is called a matrix multiplication

function (for a field 𝕂) if:

 Two arbitrary matrices in 𝑀𝑛(𝕂)can be multiplied using

at most 𝑀𝑀 (𝑛)operations in 𝕂.

 𝑀𝑀 is non-decreasing and satisfies the inequality

𝑀𝑀 (𝑛/2) ≤
𝑀𝑀(𝑛)

4
 for all 𝑛 ∈ ℕ.

Thus, Theorem 3.1 shows that functions like 𝑛 ↦ 𝑛3 or 𝑛 ↦

 𝑛𝑙𝑜𝑔27 (up to constant factors) are matrix multiplication functions.

Similar to the case of polynomial multiplication functions 𝑀.

This concept is useful as it allows stating complexity results

independent of the choice of matrix multiplication algorithm

The second condition ensures consistency: if 𝑀𝑀 (𝑛) =

 𝑐. 𝑛𝜃 for Some constant 𝑐 > 0, then 𝜃 must be at least 2. [6]

Matrix multiplication

This condition will be used to show that in divide-and-conquer

matrix algorithms, the total cost is essentially dominated by the

final recursive call.

Naive multiplication

The cubic multiplication algorithm takes as input two matrices

𝐴 = (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑛 and 𝑋 = (𝑥𝑖,𝑗)1≤𝑖,𝑗≤𝑛 in 𝑀𝑛(𝕂), and

computes their product 𝑅 = 𝐴𝑋 using the formula:

𝑟𝑖,𝑘 = ∑ 𝑎𝑖,𝑗𝑥𝑗,𝑘

𝑛

𝑗=1

 (1)

The cost to compute a single entry of ℝ is n multiplications and

 𝑛 – 1 additions, leading to an overall complexity of 𝑂(𝑛3). [7].

Winograd’s algorithm

It is possible to approximately halve the number of scalar

multiplications re- quired to compute the product 𝐴𝑋. This

demonstrates that the naive matrix multiplication is not optimal.

Assume for simplicity that 𝑛 is even, 𝑛 = 2𝑘. Winograd’s

algorithm relies on the following identity, inherited from

Karatsuba’s method: if ℓ/𝑐 is a row vector (𝑎1, . . . , 𝑎𝑛) and 𝑐 is a

column 𝑣𝑒𝑐𝑡𝑜𝑟 𝑡(𝑥1, . . . , 𝑥𝑛), then the dot product (ℓ |𝑐) = ∑ 𝑎𝑖𝑥𝑖𝑖

can be written as:

(ℓ|𝑐) = (𝑎1 + 𝑥2)(𝑎2 + 𝑥1)+ . . . + (𝑎2𝑘−1 + 𝑥2𝑘)(𝑎2𝑘

+ 𝑥2𝑘−1) − 𝜎(ℓ) − 𝜎(𝑐), (2)

where 𝜎(ℓ) = 𝑎1𝑎2 + … + 𝑎2𝑘−1𝑎2𝑘 and

 𝜎(𝑐) = 𝑥1𝑥2+ . . . + 𝑥2𝑘−1𝑥2𝑘. Note that 𝜎(ℓ) can be computed

in 𝑘 = 𝑛/2 multiplications and 𝑘 − 1 = 𝑛/2 − 1 additions.[8]

If ℓ1, . . ., ℓ𝑛 are the rows of A and 𝐶1, . . . , 𝐶𝑛 are the columns of

𝑋, then the (𝑖, 𝑗) entry of the product 𝐴𝑋 is (ℓ𝑖|𝑐𝑗). The idea is to

precompute the quantities 𝜎(ℓ𝑖) and 𝜎(𝑐𝑖) for 1 ≤ 𝑖 ≤ 𝑛; this

precomputation requires:

𝑛 (
𝑛

2
+

𝑛

2
) = 𝑛2 multiplications and 𝑛 (

𝑛

2
− 1 +

𝑛

2
− 1) =

𝑛2additions.

Once the 𝜎(ℓ𝑖)and 𝜎(𝑐𝑖) are computed, all elements 𝑟𝑖,𝑗 of

 𝑅 = 𝐴𝑋 Can be calculated as:
1

2
𝑛2. 𝑛2 =

1

2
 𝑛3 multiplications and

 𝑛2. (𝑛 + (
𝑛

2
− 1) + 2) =

3

2
𝑛3 + 𝑛2 addition.

In total, the cost of Winograd’s matrix multiplication algorithm is
1

2
𝑛3 + 𝑛2multiplications and

3

2
𝑛3 + 2𝑛2 − 2𝑛 additions.

Thus, we have effectively converted
3

2
𝑛3 multiplications into

additions, which is a significant improvement.

Waksman’s Algorithm

To compute the product of 2 × 2 matrices:

𝑅 = (
𝑎 𝑏
𝑐 𝑑

) × (
𝑥 𝑦
𝑧 𝑡

)

The above Winograd algorithm uses 8 multiplications, writing:

𝑅 = (
(𝑎 + 𝑧)(𝑏 + 𝑥) − 𝑎𝑏 − 𝑧𝑥 (𝑎 + 𝑡)(𝑏 + 𝑦) − 𝑎𝑏 − 𝑡𝑦
(𝑐 + 𝑧)(𝑑 + 𝑥) − 𝑐𝑑 − 𝑧𝑥 (𝑐 + 𝑡)(𝑑 + 𝑦) − 𝑐𝑑 − 𝑡𝑦

)

Thus, it provides no improvement over the naive algorithm for this

size. The following algorithm, due to Waksman, can be seen as an

improvement over Winograd’s algorithm. It performs the 2 × 2

matrix multiplication in 7 operations, provided that in the base

field 𝕂, the element 2 is invertible and division by 2 is free. The

idea is to write the matrix ℝ as:

ℛ =
1

2
(

𝛼1 − 𝛼2

𝛾1 − 𝛾2

𝛽1 − 𝛽2

𝛿1 − 𝛿2
) (4)

Where

𝛼1 = (𝑎 + 𝑧)(𝑏 + 𝑥),

𝛼2 = (𝑎 − 𝑧)(𝑏 − 𝑥),

𝛽1 = (𝑎 + 𝑡)(𝑏 + 𝑦),

𝛽2 = (𝑎 − 𝑡)(𝑏 − 𝑦),
𝛾1 = (𝑐 + 𝑧)(𝑑 + 𝑥),

𝛾2 = (𝑐 − 𝑧)(𝑑 − 𝑥),

𝛿1 = (𝑐 + 𝑡)(𝑑 + 𝑦),

𝛿2 = (𝑐 − 𝑡)(𝑑 − 𝑦),

Furthermore, thanks to the identity

(𝛾1 + 𝛾2) + (𝛽1 + 𝛽2) = (𝛼1 + 𝛼2) + (𝛿1 + 𝛿2)

= 2(𝑎𝑏 + 𝑐𝑑 + 𝑥𝑧 + 𝑡𝑦),

The element δ2 is a linear combination of the other seven

products α1, α2, . . . , δ1, and thus does not need to be obtained

via an additional multiplication.[9]

The algorithm derived from this, like Winograd’s algorithm,

cannot be used recursively: the proof of the underlying formulas

relies on the commutativity of elements in the base field

𝕂 (𝑒. 𝑔. , 𝑏𝑧 = 𝑧𝑏, 𝑏𝑡 = 𝑡𝑏, 𝑒𝑡𝑐.). During recursive calls, the

objects to be multiplied would themselves be matrices, for which

the commutativity property no longer holds. Thus, Winograd’s

and Waksman’s algorithms are termed commutative algorithms.

Strassen’s algorithm

Strassen’s algorithm was the first to break below 𝑂(𝑛3). Like

Karatsuba’s algorithm for polynomials, it leverages a reduction in

the number of multiplications for 2 × 2 matrices, which translates

to an exponent improvement during recursive application.

However, matrix multiplication’s non-commutativity imposes an

additional constraint: for recursive use, the new algorithm (unlike

Waks-man’s) must satisfy a non-commutativity condition.

Let A and 𝑋 be 2 × 2 matrices to be multiplied using a non-

commutative algorithm. Intuitively, this means that during the

multiplications performed by such an algorithm, the elements

𝑎, 𝑏, 𝑐, 𝑑 of 𝐴 must remain on the left, and the elements 𝑥, 𝑦, 𝑧, 𝑡 of

𝑋 on the right (this is not the case for Winograd’s and Waksman’s

algorithms, which mix elements of 𝐴 and 𝑋).

4 | P a g e

The naive algorithm is indeed non-commutative but requires 8

multiplications. The Strassen algorithm we present reduces this to:

 Computing linear combinations of the elements of A and

X,

Input: Two matrices 𝐴, 𝑋 ∈ 𝑀𝑛(𝕂), where n = 2𝑘. Output: The

product 𝐴𝑋

1. If 𝑛 = 1, return 𝐴𝑋.

2. Decompose

𝐴 = (
𝑎 𝑏
𝑐 𝑑

) and 𝑋 = (
𝑥 𝑦
𝑧 𝑡

) (5)

Where 𝑎, 𝑏, 𝑐, 𝑑 and 𝑥, 𝑦, 𝑧, 𝑡 are in
𝑀𝑛

2(𝕂)
.

3. Recursively compute the products

q1 = a(x + z),

q2 = d(y + t),

q3 = (d − a)(z − y),

q4 = (b − d)(z + t),

q5 = (b − a)z,

q6 = (c − a)(x + y),

q7 = (c − d)y.

4. Compute the sums

r1,1 = q1 + q5,

 r1,2 = q2 + q3 + q4 − q5,

r2,1 = q1 + q3 + q6 − q7,

 r2,2 = q2 + q7.

5. Return

(
𝑟1,1 𝑟1,2

𝑟2,1 𝑟2,2
)

Strassen’s Algorithm for Multiplying Two Matrices

 Perform 7 products of these linear combinations

 Recombine the results to obtain the four elements of the

product 𝐴𝑋

Explicitly, the formulas to apply are given in steps (3) and (4).

Let’s proceed recursively. By padding with zero rows and

columns, if necessary, we can assume the matrices 𝐴 and 𝑋 are of

size 𝑛 = 2𝑘 for some 𝑘 ∈ ℕ. We perform a block decomposition

of A and𝑋:

𝐴 = (
𝑎 𝑏
𝑐 𝑑

) and 𝑋 = (
𝑥 𝑦
𝑧 𝑡

)

In this notation, 𝑎, 𝑏, 𝑐, 𝑑 and 𝑥, 𝑦, 𝑧, 𝑡 are square matrices of size
𝑛

2
.

The key insight is this: thanks to non-commutativity, the formulas

given for the 2 × 2 case still apply if 𝑎, 𝑏, 𝑐, 𝑑 and 𝑥, 𝑦, 𝑧, 𝑡 are

matrices. Thus, they reduce the product of size n to 7 products of

size
𝑛

2
, plus a certain number 𝐶 (here 𝐶 = 18) of additions of size

𝑛

2
, used to form linear combinations of the blocks of 𝐴 and 𝑋, and

of the products 𝑞𝑖.

The complexity 𝑆(𝑛) of Strassen’s algorithm satisfies the

recurrence

𝑆(𝑛) ≤ 7𝑆 (
𝑛

2
) + 𝐶 (

𝑛

2
)

2

 (6)

By invoking the divide-and-conquer lemma with parameters m = 7,

p = s = 2, κ = 1, and q = 4, we derive the inequality:

𝑆(𝑛) ≤ (1 +
𝐶

3
) 𝑛𝑙𝑜𝑔27

The core idea of Strassen’s algorithm is entirely general:

improving multi-plication for small sizes improves the exponent.

Interpretation of Strassen’s formulas

It is not immediately intuitive to provide insight into Strassen’s

formulas (unlike Karatsuba’s, which implicitly relies on

polynomial evaluation at 0, 1, +∞). We present an argument, due

to Fiduccia and postdating the algorithm’s discovery, to motivate

its design.

The starting point is the observation that finding a non-

commutative algo-rithm to compute the matrix product 𝑅 = 𝐴𝑋

for 𝐴 = (
𝑎 𝑏
𝑐 𝑑

) and 𝑋 = (
𝑥 𝑦
𝑧 𝑡

)

Reduces to finding an algorithm for matrix-vector multiplication

𝑀𝑣, where

𝑀 = (

𝑎
𝑐
0
0

𝑏
𝑑
0
0

0
0
𝑎
𝑐

0
0
𝑏
𝑑

) and 𝑣 = (

𝑥
𝑧
𝑦
𝑡

) (7)

The continuation of the argument relies on the following

observation: any matrix (of arbitrary size) of the form

(
𝛼 𝛼

∈ 𝛼 ∈ 𝛼
) , (

𝛼 −𝛼
∈ 𝛼 −∈ 𝛼

) 𝑜𝑟 (
𝛼 𝛼

−𝛼 −∈ 𝛼
)

Where ∈ {0, 1} and 𝛼 ∈ 𝕂, with all elements except the four

explicitly marked being zero, can be multiplied by a vector in a

single multiplication in 𝕂. Such a matrix is called elementary.

The idea is then to decompose the matrix 𝑀 into a sum of 7

elementary matrices. We start by subtracting from M the two

elementary matrices.

𝐸1 = (
𝑎 𝑎
𝑎 𝑎

) 𝑎𝑛𝑑 𝐸2 = (
𝑑 𝑑
𝑑 𝑑

)

Corresponding to the diagonal elements of A. The resulting matrix

is

𝑀1 = (
𝑏 − 𝑎 𝑐 − 𝑎
𝑑 − 𝑎 𝑎 − 𝑑
𝑏 − 𝑑 𝑐 − 𝑑

)

Strassen himself does not remember the exact origin of his

formulas. according to Landsberg,” Strassen was attempting to

prove, by process of elimination, that such an algorithm did not

exist when he arrived at it.” In any case, Strassen claims,” First I

had realized that an estimate of tensor rank 8 for two-by-two

matrix multiplication would give an asymptotically faster

algorithm. Then I worked over ℤ/2ℤ — as far as I remember — to

simplify matters.” In other words, there must have been manual

search involved.[10]

By construction, this matrix has the property that the (1, 1) element

of the second block is the negative of the (2, 2) element of the first.

By subtracting the elementary matrix

𝐸2 = (
𝑑 − 𝑎 𝑎 − 𝑑
𝑑 − 𝑎 𝑎 − 𝑑

)

from 𝑀1, we obtain the matrix

5 | P a g e

M2= (
𝑏 − 𝑎 𝑐 − 𝑎
𝑑 − 𝑎 𝑎 − 𝑑
𝑏 − 𝑑 𝑐 − 𝑑

)

Which decomposes as 𝑀3 +𝑀4, with

𝑀3 = (
𝑏 − 𝑎
𝑎 − 𝑑

𝑏 − 𝑑

)And 𝑀4 = (
𝑐 − 𝑎
𝑐 − 𝑑

𝑑 − 𝑎

) (8)

Since 𝑎 − 𝑑 = (𝑏 − 𝑑) − (𝑏 − 𝑎) 𝑎𝑛𝑑 𝑑 − 𝑎 = (𝑐 −

 𝑎) − (𝑐 − 𝑑), each of the matrices 𝑀3 and 𝑀4 can be written

as the sum of 2 elementary matrices:

𝑀3 = 𝐸4 + 𝐸𝑆, where 𝐸4 = (
𝑏 − 𝑎
𝑎 − 𝑏

) , 𝐸𝑠 = (𝑏 − 𝑑 𝑏 − 𝑑)

and

𝑀4 = 𝐸 6 + 𝐸7, where 𝐸 6 = (𝑐 − 𝑎 𝑐 − 𝑎), 𝐸7 = (
𝑑 − 𝑐
𝑐 − 𝑑

)

Returning to the equality

(
𝑟1,1 𝑟1,2

𝑟2,1 𝑟2,2
) = ∑ 𝐸𝑖 . 𝑣

7

𝑖=1

Expressing𝑅 = 𝐴𝑋, we finally obtain the formulas given in steps

(3) and (4)

Can we do better than 2.81?

Since Strassen proved that the exponent 𝜔mul for matrix

multiplication is sub- cubic, the natural question became

determining its true value. To this end, since the 1970s, numerous

tools have been developed-- increasingly sophisticated—and

ingenuity has been abundant. New concepts such as bilinear

complexity, tensor rank, and approximate algorithms have been

extensively used, notably by Bini, Pan, Schonhage, Strassen,

Winograd, and others. These concepts will not be covered in this

work.[11]

The best current algorithm, from 2014 and due to François Le Gall,

has complexity 𝑂(𝑛2.3728639). However, it is conjectured that

𝜔mul = 2, but proving (or refuting) this conjecture remains out of

reach for now.

In practice

Fast algorithms for linear algebra have long had a poor reputation;

concretely, Strassen’s algorithm—and, to a lesser extent, Pan’s

2.77-exponent algorithm (adopted by Kaporin)—are the only fast

algorithms (with exponents below 3) that have been successfully

implemented.

In a good implementation, say over a finite field defined modulo a

reasonable-sized integer, Winograd’s and Waksman’s algorithms

are immediately efficient. Strassen’s algorithm then becomes better

for sizes on the order of a few dozen (64 is a reasonable threshold).

Most other known algorithms rely on highly complex techniques,

which result in enormous constants (and logarithmic factors) in

their complexity estimates. Consequently, in their current forms,

they cannot be efficient for sizes below millions or billions.

Other linear algebra problems

It is important to multiply matrices, but it is even more useful to

invert them, compute their characteristic polynomials, etc.

 Gaussian elimination

Recall that the classical Gaussian elimination algorithm solves

most classical linear algebra problems in a much more efficient

manner than naive algorithms.

 Definition

--Row-Echelon Form. A matrix is in row-echelon form if:

i. All zero rows are below non-zero rows,

ii. The first non-zero coefficient (called the pivot) of each

non-zero row is strictly to the right of the first non-zero

coefficient of the preceding row.[12]

A row-echelon form of a matrix A is a row-echelon matrix B left-

equivalent to A (i.e., there exists an invertible square matrix P such

that A = P B).

The Gaussian algorithm (without column pivoting) computes,

using only elementary row operations (corresponding to left

multiplications by invertible matrices), a row-echelon form of A,

on which the rank and determinant of A can be directly read.

Indeed, the non-zero rows of a row-echelon matrix B form a basis

for the vector space spanned by the rows of the original matrix A.

The number of non-zero rows of B equals the rank of A. If A is

square, its determinant equals the product of the diagonal entries of

B.

A variant of the Gaussian algorithm, called Gauss-Jordan

elimination, produces a reduced row-echelon form of A: this is a

row-echelon form where the pivots are 1, and all other entries in

the pivot columns are zero. Applied to the augmented matrix A˜ =

(A|In) formed by concatenating A with the identity matrix In, this

variant is used to compute the inverse A−1 . Indeed, the Gauss

Jordan algorithm transforms A˜ into an equivalent matrix whose

left block is the identity, i.e., it replaces A˜ with (In|A−
1).

The same algorithm can solve the system Ax = b, where b ∈ Kn, by

augmenting matrix A with the vector b. Another variant of

Gaussian elimination computes an LUP decomposition, which in

turn enables solving linear systems, inverting matrices, computing

determinants, etc.

 Definition

— Matrices L, U, P, and LUP Decomposition. A matrix is called

upper triangular, respectively lower triangular, if all entries below

(resp. above) the main diagonal are zero. A permutation matrix is a

square matrix P with entries 0 or 1, where each row and column

contains exactly one non-zero entry. An LU decomposition, resp.

LUP decomposition, of a matrix A is a factorization of the form A

= LU, resp. A = LUP, where L is lower triangular, U is upper

triangular, and P is a permutation matrix.

In summary, we assume the following statement holds.

 Theorem

— Gaussian Elimination. For any matrix A ∈ Mn(K), the following

can be computed in O(n 3) operations in K:

i. The rank rg(A), the determinant det(A), and the inverse

A−1 if A is invertible;

ii. A basis (affine) of solutions for Ax = b for any b ∈ Kn;

iii. An LUP decomposition and a reduced row-echelon form

of A

Main result

 Theorem

— Gaussian Elimination is not Optimal. Let 𝕂 be a field and let 𝜃

be a feasible exponent for matrix multiplication over 𝕂. For any

matrix 𝐴 ∈ 𝑀𝑛(𝕂), the following can be computed:

i. The determinant 𝑑𝑒𝑡(𝐴);

6 | P a g e

ii. The inverse 𝐴−1 (if 𝐴 is invertible),

iii. The solution 𝑥 ∈ 𝕂𝑛 of the system 𝐴𝑥 = 𝑏 for any

𝑏 ∈ 𝕂𝑛 , if 𝐴 is invertible;

 Theorem

— For any matrix A ∈ Mn(K), the following can be computed in

O(n ̃^θ) operations in K:

i. The determinant 𝑑𝑒𝑡(𝐴);

ii. The inverse 𝐴−1 (if A𝐴 is invertible);

iii. The solution 𝑥 ∈ 𝕂𝑛 of the system 𝐴𝑥 = 𝑏 for any

𝑏 ∈ 𝕂𝑛, if A is invertible;

iv. The characteristic polynomial of 𝐴;

v. 𝐴𝑛 𝐿𝑈𝑃 decomposition of 𝐴.

vi. The rank 𝑟𝑔(𝐴) and a reduced row-echelon form of 𝐴;

vii. A basis of the kernel of 𝐴.

Multiplication is no harder than inversion

Let 𝐴 and 𝐵 be 𝑛 × 𝑛 matrices. We wish to compute 𝐶 = 𝐴𝐵.

For this, we define

𝐷 = (

𝐼𝑛 𝐴 0
0 𝐼𝑛 𝐵
0 0 𝐼𝑛

) (9)

We then have the identity

𝐷−1 = (

𝐼𝑛 −𝐴 𝐴𝐵
0 𝐼𝑛 −𝐵
0 0 𝐼𝑛

)

which allows us to reduce the product of size 𝑛 to the inversion of

size 3𝑛. This proves our assertion and the inequality𝜔𝑚𝑢𝑙 ≤ 𝜔𝑖𝑛𝑣.

Inversion, determinant calculation, and system

solv-Ing are no harder than matrix multiplication

We will show that it is possible to invert 𝑛 × 𝑛 matrices using a

divide-and- conquer algorithm with 𝑂(�̃�𝜃) arithmetic operations,

for any feasible exponent θ.

 Matrix inversion

The matrix inversion algorithm presented here, due to Strassen, is a

recursive algorithm that can be interpreted as block Gaussian

elimination. This algorithm requires inverting certain submatrices

of A to ensure correctness.

Strassen’s algorithm for inverting a matrix

We assume for simplicity that all these matrices are invertible. The

general case (arbitrary matrix 𝐴) is more delicate and requires an

efficient divide-and- conquer-based computation of an 𝐿𝑈𝑃

decomposition of 𝐴.

The starting point is the following non-commutative identity,

where we sup-pose 𝑛 = 2 and a,𝑍 ∈ 𝕂 \ {0}:

𝐴 = (
𝑎 𝑏
𝑐 𝑑

) = (
1 0

𝑐𝑎−1 1
) × (

𝑎 0
0 𝑍

) × (1 𝑎−1𝑏
0 1

)

Where 𝑍 = 𝑑 − 𝑐𝑎−1𝑏 is the Schur complement of a in 𝐴.

This identity is easily derived using Gaussian elimination

on A and allows obtaining the following factorization:

(
𝑎 𝑏
𝑐 𝑑

)
−1

= (1 𝑎−1𝑏
0 1

) × (𝑎−1 0
0 𝑍−1) (

1 0
𝑐𝑎−1 1

) (10)

The key point is that the identity is non-commutative: it remains

valid in any non-commutative ring, provided the elements a and

𝑍 = 𝑑 − 𝑐𝑎−1𝑏 are invertible. This allows recursive application.

In each recursive call, the algorithm performs two inversions and

several multiplications. Specifically, using the notation of

Algorith, the six products ce, bt, 𝑐𝑒𝑏 = (𝑐𝑒)𝑏, 𝑒𝑏𝑡 =

 𝑒(𝑏𝑡), (𝑒𝑏𝑡)(𝑐𝑒), and 𝑡(𝑐𝑒) suffice. This analysis leads to the

following result.

 Theorem

— If all encountered submatrices are invertible, the cost of

inverting A is 3 MM (n) + O(n^2).

 Proof

The inversion algorithm satisfies the recurrence:

𝐼(𝑛) ≤ 2𝐼 (
𝑛

2
) + 6𝑀𝑀 (

𝑛

2
) + 𝐶𝑛2

Where 𝐶 is a constant. Applying the divide-and-conquer lemma

with parameters 𝑚 = 𝑝 = 𝑠 = 2, 𝜅 = 1, and 𝑞 = 4 suffices.

An immediate consequence of the Theorem is that solving the

linear system 𝐴𝑥 = 𝑏, for 𝑏 ∈ 𝕂𝑛 and invertible A satisfying the

theorem’s hypotheses, can also be done in 𝑂(𝑀𝑀 (𝑛)) = 𝑂(𝑛𝜃)

operations in 𝕂.

Determinant Calculation

The factorization shows that a slight adaptation of the inversion

algorithm al- lows computing the determinant of A simultaneously

with its inverse, at the same complexity. To do this, it suffices to

replace steps (1), (3), (5), and (7) of Algorithm 8.2 with steps (1’),

(3’), (5’), and (7’) described below:

1’ If 𝑛 = 1, return 𝐴−1 and 𝐴.

3’ Compute 𝑒 ∶= 𝑎−1 and 𝑑𝑎 ∶= 𝑑𝑒𝑡(𝑎) recursively.

5’ Compute 𝑡 ∶= 𝑍−1 and 𝑑𝑧 ∶= 𝑑𝑒𝑡(𝑍) recursively

7’ Return (
𝑥 𝑦
𝑧 𝑡

) and 𝑑𝑎𝑑𝑧

Weakening the Hypotheses

At this stage, we have proven parts (𝑎)– (𝑐) of the Theorem under

an additional hypothesis. When K is a subfield of the real numbers

ℝ, this hypothesis can be removed by noting that, for any invertible

matrix 𝐴 in 𝑀𝑛(ℝ), the matrix 𝐵 = 𝑡𝐴. 𝐴 is positive definite and

satisfies the theorem’s hypotheses. Thus, the inverse of 𝐴 can be

computed via 𝐴−1 = 𝐵 · 𝑡𝐴 in 𝑂(𝑀𝑀 (𝑛)) = 𝑂(𝑛𝜃) operations

in 𝕂.

It is not difficult to show that if matrix A is of type L (lower

triangular) or 𝑈 (upper triangular), Strassen’s algorithm computes

its inverse without requiring additional hypotheses.

This observation forms the basis of a general inversion algorithm

due to Bunch and Hopcroft.

This algorithm first computes an 𝐿𝑈𝑃 decomposition of an

arbitrary invertible matrix over any field K in 𝑂(𝑀𝑀 (𝑛))

operations and uses it to compute the inverse (and solve systems)

at the same cost.

 Solving overdetermined systems

When a matrix is not square, computing its kernel reduces easily to

the square case.

i. Remark

— Invertibility detection is also achievable in 𝑂(𝑀𝑀 (𝑛))

operations using an algorithm that computes the rank of A with this

complexity; this algorithm is beyond our scope.

7 | P a g e

ii. Theorem

Let K be a field, and suppose there is a matrix multiplication

algorithm in Mn(K) with complexity MM (n) = O(n^(θ)),θ ≥ 2.

The computation of a basis for the kernel of an m × n matrix A

(with m ≥ n) over K costs O(m ̃n^(θ-1)) operations in 𝕂.

iii. Proof

The Theorem implies this lemma if 𝑚 = 𝑛. Thus, we may

assume 𝑚 is a multiple of n by adding zero rows to matrix 𝐴.

Let 𝐴1 denote the matrix of the first 𝑚 rows of 𝐴, 𝐴2 the next 𝑚

rows, etc.

We can compute a basis for the kernel of 𝐴1 with a cost of

𝑂(�̃�𝜃): let 𝑁1 be the matrix whose columns form this basis, so

that 𝐴1𝑁1 = 0. We then compute the matrix 𝑁2 whose columns

form a basis for the kernel of 𝐴1𝑁1, such that 𝐴2𝑁1𝑁2 = 0.

Continuing similarly with 𝐴3, we compute 𝑁3 such that

𝐴3𝑁1𝑁2𝑁3 = 0, etc. Finally, the columns of 𝑁1 ··· 𝑁𝑚 𝑛⁄ form a

basis for the kernel of 𝐴. This yields the total cost 𝑂(�̃�𝑛𝜃−1)as

claimed.

iv. Characteristic polynomial calculation

Let 𝐴 be an 𝑛 × 𝑛 matrix over 𝕂. In this section, we present an

efficient algorithm due to Keller-Gehrig for computing the

characteristic polynomial 𝜒𝐴(𝑋) = det (𝑋𝐼𝑛 − 𝐴) of A. We will

detail a specific simple case (and common scenario). Specifically,

we assume throughout that 𝜒𝐴(𝑋) = 𝑋𝑛 + 𝑝𝑛−1𝑋𝑛−1 + ···

 + 𝑝0 is irreducible in 𝕂[𝑋]; in particular, it coincides with the

minimal polynomial of 𝐴. The algorithm crucially relies on the

following lemma.

v. Lemma

— Let 𝐴 be an 𝑛 × 𝑛 matrix over 𝕂, whose characteristic

polynomial is irreducible in 𝕂[𝑋].

Let v be a non-zero vector in Kn, and let P ∈ Mn(K) be the matrix

whose j-th column is 𝐴𝑗−1𝑣 for 1 ≤ 𝑗 ≤ 𝑛. Then P is invertible,

and the matrix P −1AP is of companion type. Companion Matrix :

A matrix 𝐶 = (𝑐𝑖,𝑗)1≤𝑖,𝑗≤𝑛 is called a companion matrix if its first

n − 1 columns contain only zeros except for the entries

𝑐2,1, 𝑐3,2, . . . , 𝑐𝑛,𝑛−1cn,n−1, which all equal 1. The key advantage of

Lemma 8.7 is that the characteristic polynomial of a companion

matrix 𝐶 is 𝑋𝑛 − ∑ 𝐶𝑖,𝑛𝑋𝑖−1𝑛
𝑖=1 , requiring no arithmetic operations

to compute.

vi. Proof

To prove this lemma, we first observe that, due to the hypothesis

on 𝐴, the family 𝐵 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, where 𝑣𝑖 = 𝐴𝑖−1𝑣 , forms

a basis for the 𝕂-vector space 𝕂𝑛, hence 𝑃 is invertible. Indeed,

assuming the contrary would imply the existence of a non-zero

polynomial 𝑄 ∈ 𝕂[𝑋] of degree less than 𝑛 such that 𝑄(𝐴)𝑣 =

 0. Without loss of generality, assume 𝑄 has minimal degree with

this property. Since 𝜒𝐴(𝐴)𝑣 = 0, 𝑄 divides 𝜒𝐴; but since 𝜒𝐴 is

irreducible, this implies 𝑄 is constant, leading to 𝑣 = 0, a

contradiction.

Since 𝐴𝑣𝑖−1 = 𝑣𝑖, the matrix 𝐶 representing the linear map

𝑤 → 𝐴𝑤 in basis 𝐵 is a companion matrix. The change-of-basis

theorem then gives = 𝑃−1 𝐴𝑃 , concluding the proof.

 Characteristic polynomial calculation

Input: 𝐴 matrix 𝐴 ∈ 𝑀𝑛(𝕂) with 𝑛 = 2𝑘.

Output: Its characteristic polynomial det(𝑋𝐼𝑛 – 𝐴).

i. Choose a non-zero vector 𝑣 ∈ 𝕂𝑛.

ii. M := A; P := v.

iii. For 𝑖 from 1 to 𝑘, set 𝑃 to the horizontal concatenation of

𝑃 and 𝑀𝑃 ,then set 𝑀 ∶= 𝑀2.

iv. 𝐶 ∶= 𝑃−1 𝐴𝑃.

v. Return 𝑋𝑛 + 𝑝𝑛 − 1𝑋𝑛 − 1 + ··· + 𝑝0 , 𝑤ℎ𝑒𝑟𝑒 𝑡 =

 (−𝑝0, . . . , −𝑝𝑛−1) is thelast column of C.

Algorithm — keller-gehrig’s characteristic polyno-

mial algorithm

Since matrices A and 𝐶 = 𝑃−1 𝐴𝑃 are similar, they share the

same characteristic polynomial. The key idea of Keller-Gehrig’s

algorithm is to construct the matrix 𝑃 from Lemma, then

determine 𝐶 via multiplication and inversion, and finally read the

polynomial coefficients from the last column of 𝐶.

In terms of complexity, the only costly step is constructing matrix

. The naive approach of computing the Krylov sequence

𝑣, 𝐴𝑣, … , 𝐴𝑛−1𝑣 via successive vector-matrix multiplications costs

cubic time. A crucial insight is to group these vector-matrix

products into matrix-matrix multiplications:

Compute in 𝑂(𝑛2) operations the vectors 𝑣 and 𝐴𝑣, then compute

the binary exponentiation sequence 𝐴, 𝐴2, 𝐴4, 𝐴8,... in 𝑂(𝑙𝑜𝑔 𝑛)

steps. Finally, compute the columns of 𝑃 via products like

𝐴2 × (𝑣|𝐴𝑣) = (𝐴2𝑣|𝐴3𝑣), 𝑡ℎ𝑒𝑛 𝐴4 × (𝑣| ··· |𝐴3𝑣) =

 (𝐴4𝑣| ··· |𝐴7𝑣), etc. Each such product is performed using an

𝑛 × 𝑛 matrix multiplication, with artificial zero columns added to

the right-hand factors.

This method yields the algorithm above. We have just proven the

following weaker version of point (d):

 Theorem

— Let 𝕂 be a field, and suppose there exists a matrix

multiplication algorithm in 𝑀𝑛(𝕂) with complexity 𝑀𝑀 (𝑛) =

 𝑂(𝑛𝜃), 𝜃 ≥ 2. If the characteristic polynomial of a matrix

𝐴 ∈ 𝑀𝑛(𝕂) is irreducible in 𝕂[𝑋], it can be computed in

𝑂(𝑀𝑀 (𝑛)𝑙𝑜𝑔 𝑛) operations in 𝕂.

Division-free algorithms

It is sometimes useful to compute the characteristic polynomial

without per- forming divisions in the coefficient ring.

 Theorem — Berkowitz

The characteristic polynomial of an 𝑛 × 𝑛 matrix with coefficients

in a commutative ring 𝐴 can be computed in 𝑂(𝑛𝜃+1) operations in

𝐴, where 𝜃 is a feasible exponent for multiplication.

However, it is straightforward to achieve this same complexity

bound by assuming divisions by 2, . . . , 𝑛 are possible in the

coefficient ring (which holds, for example, in an 𝕂 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎

over a field 𝕂). Indeed, the 𝑖 − 𝑡ℎ Newton sum of the

characteristic polynomial of matrix 𝐴 can be obtained as 𝑇𝑟(𝐴𝑖). It

suffices to use the algorithm to compute the characteristic

polynomial coefficients of 𝐴 from these traces for 𝑖 = 0, . . . , 𝑛 −

 1. This is the Le Verrier method.

A different perspective was developed by Landsberg [?], who

showed that open questions about matrix multiplication complexity

can be formulated in geometric and representation theory terms.

Finally, another active research path to prove (or disprove) that

8 | P a g e

𝜔𝑚𝑢𝑙 = 2 was pioneered by Cohn and Umans [?]. They

developed a unified approach reducing matrix multiplication to

studying the discrete Fourier transform in group algebras

associated with certain finite groups, which have good properties

regarding their irreducible representations. Through this lens, they

recovered 𝜔𝑚𝑢𝑙 < 2.41 and reduced 𝜔𝑚𝑢𝑙 = 2 to combi-

natorial and group-theoretic conjectures.

 Determinant and permanent

The permanent of a matrix 𝐴 ∈ 𝑀𝑛(𝕂) is defined as

𝑝𝑒𝑟𝑚(𝐴) = ∑ ∏ 𝒶𝑖 , σ(𝑖).𝑛
𝑖=1σ∈Sn (11)

Despite the similarity between this definition and that of 𝑑𝑒𝑡(𝐴),

no polynomial- time algorithm is known for computing perm(𝐴)

over a field 𝕂 of characteristic different from 2. Valiant [?] proved

that computing the permanent of 𝑛 × 𝑛 matrices with {0, 1}

entries is an NP-hard problem.

Conclusion

Dense linear algebra plays a central role in numerous algorithmic

domains, from matrix multiplication to solving linear systems.

Recent advancements, notably thanks to algorithms such as those

by Strassen, Winograd, and Waksman, have shown that it is

possible to significantly improve the complexity of matrix

operations. In particular, we have established that the exponent of

matrix multiplication is below 3, while conjecturing it might reach

2.

These results open the way to practical applications across diverse

fields, ranging from cryptography to numerical simulation, through

combinatorial optimization. However, despite these advances,

many challenges remain in devel- oping efficient and robust

algorithms, especially for very large matrix sizes or in non-

commutative contexts.

It is crucial to continue research efforts on these algorithms, not

only to enhance the performance of algebraic computations but

also to explore new applications that could benefit from these

advanced techniques. Future work should focus on understanding

the theoretical limits of these algorithms and seeking innovative

methods to tackle complex algorithmic problems. Dense linear

algebra, with its multiple facets and challenges, remains a dynamic

and promising field of study, essential for the development of

modern technologies and computational applications.

References

1. Rota, G. C. (Ed.). (1976). Encyclopedia of Mathematics

and its Applications. Cambridge University Press.

2. Ben-Or, M., & Tiwari, P. (1988, January). A

deterministic algorithm for sparse multivariate

polynomial interpolation. In Proceedings of the twentieth

annual ACM symposium on Theory of computing (pp.

301-309).

3. Cabay, S., & Labahn, G. (1989, July). A fast, reliable

algorithm for calculating Pade-Hermite forms.

In Proceedings of the ACM-SIGSAM 1989 international

symposium on Symbolic and algebraic computation (pp.

95-100).

4. Giorgi, P., Jeannerod, C. P., & Villard, G. (2003,

August). On the complexity of polynomial matrix

computations. In Proceedings of the 2003 international

symposium on Symbolic and algebraic computation (pp.

135-142).

5. Hermite, C. (1873). Extrait d'une lettre de Monsieur Ch.

Hermite à Monsieur Paul Gordan.

6. Hermite, C. (1874). Sur la fonction exponentielle.

Gauthier-Villars.

7. Mahler, K. (1968). Perfect systems. Compositio

mathematica, 19(2), 95-166.

8. Massey, J. (1969). Shift-register synthesis and BCH

decoding. IEEE transactions on Information

Theory, 15(1), 122-127.

9. Mills, W. H. (1975). Continued fractions and linear

recurrences. Mathematics of Computation, 29(129), 173-

180.

10. Padé, H. (1892). Sur la représentation approchée d'une

fonction par des fractions rationnelles. In Annales

scientifiques de l'Ecole normale supérieure (Vol. 9, pp.

3-93).

11. Shafer, R. E. (1974). On quadratic approximation. SIAM

Journal on Numerical Analysis, 11(2), 447-460.

12. Zierler, N. (1968). Linear recurring sequences and error-

correcting codes. Error Correcting Codes (Proc.

Sympos. Math. Res. Center, Madison, Wis., 1968), 47-59.

