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1 Introduction 

The necessary and sufficient conditions for (NQ(x),+, .) to be a 

Neutron Quadruple Ring was given in [1]. In this work, we will 

give some basic definitions, examples and results involving 

neutron Quadruple Ring of polynomials. 

Definition  
Suppose that (NQ(x),+, .) is  a neutrosophic ring and x, an 

indeterminate.  

An infinite  formal sum given by : NQ(x) = 

∑ (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹)𝑖𝑥𝑖∞
𝑖=0   

( where each ak ∈ ℝ or ℂ ∀ k = 1,2, . . . ,4) is known as a formal 

power series in x. Here, each of the  (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹)𝑖 is a 

coefficient in the neutron Quadruple number NQ(x) for which the  

ak ∈ ℝ or ℂ ∀ k. Now, suppose that  NQ[[x]] denotes the set of all 

such power series. Defne “⊕” to be the addition and “⊙” the 

multiplication in NQ[[x]] by   NaQ[[x]] ⊕ NbQ[[x]] = ? and 

NaQ[[x]] ⊙ NbQ[[x]] = ? , where  NaQ[[x]] ,  NbQ[[x]] ∈ NQ[[x]] . 

And we call the triple (NQ[[x]] , ⊕ , ⊙ ) the 

neutroQuadrupleRing of formal power series in the single 

indeterminate x with coefficients in NQ[[x]]. 

Remarks  
If NQ[x] is commutative, s is NQ[[x]]. Also, NQ[[x]] has identity 

iff NQ[x] does. 

Now, if  it is required that in the infinite formal sum for each 

NtQ(x) as defined, al except a finite number of the coefficients are 

zero, then NQ(x) is called a neutroQuadruple polynomial in the 

single indeterminate x. If  (a_1,a_2 T,a_3 I,a_4 F)_i = 0 for all >n , 

and (a_1,a_2 T,a_3 I,a_4 F)_n ≠ 0, then, NaQ(x) is a 

neutroQuadruple polynomial of degree n and (a_1,a_2 T,a_3 I,a_4 

F)_n is said to be the leading coefficient of the NaQ(x). We then 

write NaQ(x) = ∑_(i=0)^n▒〖 (a_1,a_2 T,a_3 I,a_4 F)_i x^i 〗, 

which implies that NaQ(x) = (a_1,a_2 T,a_3 I,a_4 F)_0 + (a_1,a_2 

T,a_3 I,a_4 F)_1 x + (a_1,a_2 T,a_3 I,a_4 F)_2 x^2 + . . . + 

(a_1,a_2 T,a_3 I,a_4 F)_(n-1) x^(n-1) + (a_1,a_2 T,a_3 I,a_4 F)_n 

x^n. Usually, we refer to (a_1,a_2 T,a_3 I,a_4 F)_0 as the constant 

term of the neutron Quadruple NaQ(x) under the definitions of the 

addition and multiplication given above for the power series. The 

neutron Quadruple set NQ[x] of polynomials in the indeterminate x 

over the neutron Quadruple field NQ(F)   can also be seen as a 

neutrosophicRing. 

Definition (see [1]) 
A neutrosophic quadruple number is a number of the form (a, bT, 

cI, dF) where  (T, I, F) have their usual neutrosophic logic 

meanings and a, b, c, d ∈ R  or C. The set NQ defined by:  

 NQ = {(a, bT, cI, dF): a, b, c, d ∈ R  or C.} 

By definition 1.1, we have the emergence of the 

neutronQuadruplePolynomial Ring as follows: 

Definition   
A neutron Quadruple Ring of polynomials is of the form given by :  

NQ[x] = ∑ 𝐶𝑘𝑥𝑘𝑛
𝑘=0  for a single indeterminate x,  

where 𝐶𝑘 = (ak, bkT, ckI, dkF): a, b, c, d ∈ ℝ  or ℂ.  

Hence, the operations of addition, subtraction, multipliation and 

division can thus be formulated for the 

neuroQuadruplePolynomialRing. 

Addition   

Given that : NQ[x](1)  = ∑ (𝐚𝐤, 𝐛𝐤𝐓, 𝐜𝐤𝐈, 𝐝𝐤𝐅)𝒙𝒌𝒎
𝒌=𝟎  and 

 

                     NQ[x](2)  = ∑ (𝐞𝐤, 𝐟𝐤𝐓, 𝐠𝐤𝐈, 𝐡𝐤𝐅)𝒙𝒌𝒏
𝒌=𝟎  

 

Then, NQ[x](1)  + NQ[x](2)  = ∑ (Ak, BkT, CkI, DkF)𝑥𝑘max {𝑚,𝑛}
𝑘=0 , 

where Ak  =  (ak + ek)  , Bk =  (bk +  fk ) , Ck = (ck + gk),

and  Dk = (dk + hk ) .  The  operation of subtraction is conducted 

analogously. 

Multiplication 

NQ[x](1).NQ[x](2)  =   ∑ (Ak, BkT, CkI, DkF)𝑥𝑘𝑚+𝑛
𝑘=0  , where 

AI  = ∑ aiej 
k
i=0,j=k−i   , Bi =  ∑ bifj 

k
i=0,j=k−i  , Ci = ∑ cigj 

k
i=0,j=k−i ,

and  Di = ∑ dihj 
k
i=0,j=k−i . 

 

2 Division algorithm 
The major rule for any division algorithm to hold or being valid is 

that  for such (2) to divide (2), the degree 𝑚 must be greater than  

𝑛. Hence, for NQ[x](2) to divide NQ[x](1)  , there exists 
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NQ[x](3)and NQ[x](4)   such that  NQ[x](1)  =  

NQ[x](2).NQ[x](3)   + NQ[x](4)  and  deg{NQ[x](4)} <  

deg{NQ[x](2)} or  NQ[x](4) = 0. 

3 Linear neutroQuadrupleRing of 

polynomials  
(𝑏1, 𝑏2𝑇, 𝑏3𝐼, 𝑏4𝐹).𝑋   =   (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹).  

Let  X  =     
(𝑎1,𝑎2𝑇,𝑎3𝐼,𝑎4𝐹)

((𝑏1,𝑏2𝑇,𝑏3𝐼,𝑏4𝐹))
  =  (𝑐1, 𝑐2𝑇, 𝑐3𝐼, 𝑐4𝐹)   say, 

We have that : 

(𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹)    =    (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 𝑏4𝐹). (𝑐1, 𝑐2𝑇, 𝑐3𝐼, 𝑐4𝐹) 

 

From this , the following relationships may be obtained : 

a1  =  b1c1  . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . .. 

. . . .  . . . . . . . .  . .(1) 

a2  =  b1c2 +  ( c1 + c2 )b2 . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . 

. . . . . . . . . . . .  . .(2) 

a3 = b1c3 + b2c3 + (c1 + c2 + c3 )b3 . . . . . . .. . . . . . . . . . . . . .. . . . . . . 

. . . . . . . ..  . . . . .  (3) 

a4  = ( b1 + b2 + b3 )c4 + ( c1 + c2 + c3 + c4 )b4 . . . . . .. . . . . . . . . . . . 

.. . . . . .  . . . . . .  . .(4) 

where we have  

b1 | a1     

(b1+b2) | (a1 + a2)      i.e.    ∑ 𝑏𝑖
2
𝑖=1  |   ∑ 𝑎𝑖

2
𝑖=1  

(b1+b2 + b3) | (a1 + a2 + a3)         i.e.    ∑ 𝑏𝑖
3
𝑖=1  |   ∑ 𝑎𝑖

3
𝑖=1     and  

(b1+b2 + b3 + b4) | (a1 + a2 + a3 + a4)             i.e.    ∑ 𝑏𝑖
4
𝑖=1  |   ∑ 𝑎𝑖

4
𝑖=1  

In general, I could be proposed that :  ∑ 𝑏𝑖
𝑛
𝑖=1   |   ∑ 𝑎𝑖

𝑛
𝑖=1   for every 

integer 𝑛 

 Based on this observation, some conditions for divisibility can be 

as well proposed which could be further useful in the general 

divisibility concepts of the neutroQuadrupleRing of polynomials. 
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